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Statistics about the 
population

Language model

Loss-minimizing 
predictor h

Data Science: Correct?

Can we verify the output was correct, given samples from 
correct distribution?

Trust me, it’s 
a chicken



Running the algorithm  on many 
samples from , yields a chicken

𝒜
D

Can we verify claims about , without 
replication? 

D
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Indeed, testing via samples alone might be very hard, label invariant 
properties require  [RRSS07, VV10]Θ(N/log N)
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Verifying Properties of Distributions[CG’17, GMR’85]
ε ∈ (0,1]

Prover

Distribution  over ,D [N]

VerifierD ∈ 𝒫

⋮

Accept / Reject

Completeness: , V 
accepts w.h.p. 

Soundness: if  is -far from 
satisfying , cheating prover 

, V rejects whp.

D ∈ 𝒫

D ε
𝒫 ∀

P*

Tolerant verification: approximate 
distance to property up to ε

Efficient verification: V’s samples 
& runtime, comm., #of rounds.  

Efficient proof: P’s samples, P’s 
runtime.



Prover

Distribution  over ,D [N]

Verifier

Accept / Reject

Trivial Solutions:

1. No communication (replication). Verifier 
ignores prover, repeats computation or 
learns  (using  samples.) 

2. High communication complexity: P sends 
 , verifier “identity tests”, 

using  samples. 

Communication Complexity: .
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coin

Given complete description , 
  approximated  by low 

depth circuit / low space TM

(x, D(x))
TV(D, 𝒫) Õ (N1.1)
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My goals for the first hour:  

Show that with sample access and communication with a prover we 
can do many unexpected things! 

Demonstrate tools and ideas.  

questions to have in mind: what assumptions over the distribution 
can help us? What settings might this capture? 
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Many samples

Prover

Distribution  over D [N]
Few samples

Verifier

Completeness: if   w.h.p. V 
accepts.  

Soundness:  w.h.p. either V rejects or 
outputs a collection of , where  
for almost all samples . 

Verifier samp. complexity, runtime .

D̃ (xi) = D(xi) →

∀P*
(x, πx) πx ≈ D(x)

x

Õ (N1/2)

Goal:

Verified Tagged Sample Protocol

x1, …, xs

D̃ (x1), … D̃ (xs)

Simplifying assumption: D(x) ∈ { 1
N

,
2
N

, …,
100
N }
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True probability = Alleged probability
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𝔼x∼u{x1,…,xt} [D(x)] 2
N

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

 determined AFTER prover's message:(bi)

More accurately 
1. Samples tagged . 
2. Equations approximately hold.
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More accurately 
1. Samples tagged . 
2. Equations approximately hold.

[2/N, (1 + ε) ⋅ 2/N]≈

≈

Look at the  samples tagged : 

1. Consistency: (# of D-samples) = 2  (# of U-samples) 

2. Correct avg. probability: total mass is  (total # of samples)

t 2/N
⋅

2
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⋅
Instead of  possible 

probabilities,  possible 
probabilities

100
O (log (N/ε))



Soundness Analysis
(x1, x2, …xt)
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2
N

,
2
N

, …
2
N

)

 determined AFTER prover's message:(bi)

Alleged probabilities far from correct  
Equations don’t hold even approximately.

⟹
Claim:Test 1 passed:  
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≈

Look at the  samples tagged : 

1. Consistency: (# of D-samples) = 2  (# of U-samples) 
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• Immediate corollary: verify any label-invariant property.


• Next - leverage to obtain:

(x, D(x)) x ∼ D

Theorem [HR’24]: very rich family of properties has an interactive proof with: 

• Verifier sample complexity , runtime, and communication . 

• Honest Prover time , sample complexity .

Õ (N0.9) poly(ε−1) Õ (N0.95) poly(ε−1)
poly(N) Õ (N1.1) poly(ε−1)



Recap
• Via sample access, we can verifiably obtain  for many .


• Immediate corollary: verify any label-invariant property.


• Next - leverage to obtain:

(x, D(x)) x ∼ D

Theorem [HR’24]: very rich family of properties has an interactive proof with: 

• Verifier sample complexity , runtime, and communication . 

• Honest Prover time , sample complexity .

Õ (N0.9) poly(ε−1) Õ (N0.95) poly(ε−1)
poly(N) Õ (N1.1) poly(ε−1)

Given complete description 
,   

approximated  by low depth 
circuit / low space TM

∀x, (x, D(x)) TV(D, 𝒫)



Summary

Main takeaway - useful tool: given only sample access, many claims 
can be verified much more efficiently than repeating computation. 

Not discussed:  

• Lower bounds - sample lower bounds; proving is harder than testing.  

• Crypto assumptions - reduce sample (what about communication?) 

• Super-fast protocol for specific problems (verifying distribution are far). 
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• Super-fast protocols for specific problems (e.g. verifying distributions are far). 



Questions for Discussion

Moving forward, to the context of AI:  
1. Where do we find distributions accessible by samples (and not queries)?  

               Choosing training set? Prompt distribution? Output distribution?  

2. What might we want to verify about distributions? (Alignment? Compliance? Diversity 
of data?) Delegation? Can it be a property of the distribution? 

3. Extending the model to accommodate more settings (better parameter regime): 

a. New access models: what type of access do we expect to have (cond. sampling?)? 

b. More assumptions: what if distribution admits some structure (e.g. is uniform, over 
metric space, We are given some other advice)? Can we get super-fast protocols?



Theorem[H, Rothblum ’25]: 
Any interactive proof that a distribution is uniform over  elements, has either: 

• The verifier sample complexity is , or - 

• The honest prover sample complexity is .

N/2

Ω (N2/3)
Ω(N)

Theorem[H, Rothblum ’25]: 
For any constant , and , any interactive proof that a distribution  satisfies 

, or is -far from any such distribution,  has either: 

• The verifier sample complexity is , or - 

• The honest prover sample complexity is .

c ∈ ℝ+ k ∈ ℕ D
∥D∥k ≤

c
N1−1/k

ε

Ω (N1−1/k)
Ω(N)


