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Data Science: Correct?

correct distribution?

Gather valuable

dataset

Indepedent sample from
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Data Science: Correct?

Trust me, It's
a chicken

Statistics about the
population

Loss-minimizing
\. predictor h

Can we verify the output was correct, given samples from
correct distribution?




Running the algorithm &/ on many

samples from D, yields a chicken

Can we verify claims about D, without
replication?
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Distribution Testing [GGR'96, BFRSW'00]

Distribution D over [N], € € (0,1]

Distribution property & (same role as language tor decision
problems). Examples:

| Label invariant properties (does D have Shannon Entropy k?
Acc:ept it D e 9: - Support size M? Distance 6 from Uy?), General properties
ireject if D is e-far (can a predictor from class # have loss better than a over D).

Sample access, i.e. x ~ D, is very restrictive.

A tull description would be (x, D(x)) for every x € [N].

Indeed, testing via samples alone might be very hard, label invariant
properties require ®(N/log N) [RRSS07, VW10]
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Distribution D over [N], € € (0,1]

Completeness: D € &£,V
accepts w.h.p.

Soundness: it D is e-far from
satistying &, Vcheating prover
P*,V rejects whp.

Tolerant verification: approximate
distance to property up to &

Efficient verification: V's samples
& runtime, comm., #of rounds.
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Efficient proof: P's samples, P's

Accept/ Reject ,
runtime.
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Distribution D over [N],

Trivial Solutions:

1. No communication (replication). Verifier
Ignores prover, repeats computation or

learns D (using O (N- 8_2) samples.)

2. High communication complexity: P sends
(x,D(x)) Vx € [N], veritier “identity tests”,

using O (\/N - 8_2) samples.
Communication Complexity: E(N).

Accept/ Reject
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*Ignoring poly(e~!) factors

Results Overview (joint work with Guy Rothblum)

P t F 'I VvV SamP|.e | Comm. | # of i Honest P Sample N
roperty Family | Complexity | Complexity |Messages | Complexity* | otes |
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My goals for the first hour:

Show that with sample access and communication with a prover we

can do many unexpected things!

Demonstrate tools and ideas.
|
questions to have in mind: what assumptions over the distribution |
can help us? What settings might this capture?
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Verified Tagged Sample Protocol

Goal: verifiably obtain a tagged sample, i.e. (x, D(x)) where x ~ D i.i.d. , while
requiring << N samples.

® Very useful:

® Approximate the probability histogram. E.g. half the samples have probability
2/N = ~0.5 mass of D on elements w.p, 2/N = there are (approx.) N/4
elements with probability 2/N.

® Approximate distance from fixed distribution Q given explicitly.

® More...
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outputs a collection of (x, x,), where 7, ~ D(x)

for almost all samples x.

Verifier samp. complexity, runtime 0 (N I 2).
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Obtaining Verified Tagged Sample

Sets =6 (\/]TJ ), repeat 2s times:

| 1. Flip fair coin b.
&7 2.1fb =0, draw x ~ D; else x ~ Upy;.

Verifier tests Draw s fresh D-samples, and

2
Look e.g. at the samples with alleged prob. 2./ N: check s (t : —) of them have

N
1. Consistency: (# of D-samples) = 2 - (# of U-samples) alleged prob. 2/N.
2
2. Correct avg. probability: total mass is — - (total # of samples)
N Do this for all

100 }




Obtaining Verified Tagged Sample

- s s S S S S e . .. sl

Sets =6 (\/N ), repeat 2s times:

+ [T 1. Flip fair coin b.
\J@ 2.1fb =0, draw x ~ D; else x ~ Upy;.

3

Verifier tests Completeness Draw s fresh D-samples, and

2
Look e.g. at the samples with alleged prob. 2./ N: check s (t - —) of them have

N
1. Consistency: (# of D-samples) = 2 - (# of U-samples) alleged prob. 2/N.

2
2. Correct avg. probability: total mass is — - (total # of samples)

N
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Look at the  samples tagged 2./ N:

1. Consistency: (# of D-samples) = 2 - (# of U-samples)
2

: fotal massis — -

2. Correct avg. probabilit total # of samples

P’s perspective: V decides (b;) AFTER P’s

message.
I, “b then x* I1, “x then b"

1 Draw b — 1. Draw x ~ %D + %U[N]
2.1fb =0, x ~ D;ow.x ~ Uy, o D(x)

2. Vx, b \x = 0, w.p.

;ow.b| =1
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Look at the t samples tagged 2./ N:

1. Consistency: (# of D-samples) = 2 - (# of U-samples)

2
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N

(b;) determined AFTER prover's message:

I1, «x thenlb” 1
1. Drawx ~ —D + —U
9 9 V]

D(x)
D(x)+ 1/N

2. Vx,b| =0, wp.

;ow.b| =1



Look at the t samples tagged 2./ N:

1. Consistency: (# of D-samples) = 2 - (# of U-samples)

2
2. Correct avg. probability: total mass is — - (total # of samples)

N

(b;) determined AFTER prover's message:

Test 1 passed: II “\ then b”
,
— 1 1
Ny } or (b‘x 1) =l 1. Drawx~5D+5U[N]
y 1 X150 - o Xy Pr (b‘x:()> 2 _
Test 2 passed: 2.Vx,b| =0, wp. Do f)l ~owb| =1
X

2
N

—x~ X150 X,) [D(X)] =




Soundness Analysis

AL
Look at the t samples tagged 2/ N: DTN

1. Consistency: (# of D-samples) = 2 - (# of U-samples)

2
2. Correct avg. probability: total mass is v (total 3

[

L of samples)

(b,) determined AFTER prover'

Test 1 passed: . .
ol . X thenlb 1
Ny } r( = ) =l 1. Drawx ~ —D + —Uy,
X~ X1, 00X, Py (19 ‘x _ O) N ) )
D
Test 2 passed.: X, b \x = 0, w.p. (x) co.w. b |x — 1]

) D(x)+ 1/N

N

—x~ X150 X,) [D(X)] =
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2
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(b;) determined AFTER prover's message:

Test 1 passed: II “\ then b”
,
1 1
- LN =l 1. Draw x ~ —D + — Uy,
.XNM{Xl,...,xt} D()C) 2 2 2
D
Test 2 passed: 2.Vx,b| =0, wp. Do f)l ~owb| =1
X

2
N

—x~ X150 X,) [D(X)] =




Look at the t samples tagged 2./ N:

1. Consistency: (# of D-samples) = 2 - (# of U-samples)

2
2. Correct avg. probability: total mass is — - (total # of samples)

N

(b;) determined AFTER prover's message:

Test 1 passed: II “\ then b”
| N ’ I 1
- _ 2 1. Draw x ~ —D + — Uy,
xNu{xla“"xt} D(X) 2 2 2
D
Test 2 passed: 2.Vx,b|_ =0, wp. D :ic)l /N; ow.b| =1
X

2
N

—x~ X150 X,) [D(X)] =




Soundness Analy5|s

Look at the t samples tagged 2./ N:

1. Consistency: (# of D-samples) = 2 - (# of U-samples)

2
2. Correct avg. probability: total mass is — - (total # of samples)

N

(b;) determined AFTER prover's message:

fest1passed: 1 N Jensen’s Inequality —> D(X) is a constant r.v.
o lm] X = E[DX)] = 2/N

Test 2 passed:

e [P0 =




Soundness Analy5|s

Look at the  samples tagged 2./ N:

1. Consistency: (# of D-samples) = 2 - (# of U-samples)

2
2. Correct avg. probability: total mass is — - (total

N

4L

of samples)

(b;) determined AFTER prover's message:

Test 1 passed:
1 N Jensen’s Inequality —> D(X) is a constant r.v.
X~ A XXy ) lD(x)] =5 T _[D(X)] :2/N
Test 2 passed: Equations hold only if
] D) = 2 True probability = Alleged probability
x~, {x1,....%} AT




Soundness Analysis

Look at the t samples tagged 2/ N: ST

1. Consistency: (# of D-samples) = 2 - (# of U-samples)

2
2. Correct avg. probability: total mass is — - (total ;

N

[

L of samples)

(b;) determined AFTER prover's message:

Test 1 passed: More accurately
SR [Dz )] ~ g 1. Samples tagged [2/N, (1 +e¢)- 2/N].
g LK o0 o0 Xy %
2. Equations approximately hold.
Test 2 passed:

2
—x~ X1, X;) [D(X)] ~ N



Soundness Analy5|s

Look at the  samples tagged 2./ N:

1. Consistency: (# of D-samples) = 2 - (# of U-samples)

2
2. Correct avg. probability: total mass is — - (total

N

4L

of g

Instead of 100 possible L
probabilities, O (log (N/ 5)) poss:ble

(b;) determined AFTER prover's message:
probabillities

Test 1 passed: More accurately
SR [Dl ] ~ g 1. Samples tagged [2/N, (1 +e¢)- 2/N].
g LK o0 o0 Xy %
) 2. Equations approximately hold.
Test 2 passed:




Soundness Analysis

- “"‘;FM\‘
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Look at the t samples tagged 2./ N:

1. Consistency: (# of D-samples) = 2 - (# of U-samples)

2
2. Correct avg. probability: total mass is — - (total ;

N

[

L of samples)

(b;) determined AFTER prover's message:

Test 1 passed: Claim:
PR [ : ] ~ N Alleged probabilities far from correct —
D(x) 2 Equations don't hold even approximately.
Test 2 passed:
2
— D % S
X~ A X e Xs } [ (X)] N
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» Via sample access, we can verifiably obtain (x, D(x)) for many x ~ D.

* Immediate corollary: verify any label-invariant property.

 Next - leverage to obtain:

Theorem [HR'24]: very rich family of properties has an interactive proof with:
e Verifier sample complexity 5(N0°9) ooly(e™1), runtime, and communication 5(N0'95) poly(e™).

 Honest Prover time poly(V), sample complexity E(N“) poly(e™h).



Recap

» Via sample access, we any x ~ D.

Given complete description

Vx, (x, D(x)), TV(D, &)
approximated by low depth
circuit / low space TM

 Immediate corollary: ve

 Next - leverage to obta

Theorem [HR'24]: very rich family of properties has an interactive proof with:
e Verifier sample complexity 5(NO'9) ooly(e™1), runtime, and communication E(NO'%) poly(e™).

* Honest Prover time poly(V), sample complexity E(N“) poly(e™1).
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can be verified much more efficiently than repeating computation.



Summary

Main takeaway - useful tool: given only sample access, many claims
can be verified much more efficiently than repeating computation.

Not discussed:

® [ower bounds - sample lower bounds; proving is harder than testing.
® Crypto assumptions - reduce sample (what about communication?)

® Super-fast protocols for specific problems (e.qg. verifying distributions are far).



Questions for Discussion

Moving forward, to the context of Al:
1. Where do we find distributions accessible by samples (and not queries)?

Choosing training set? Prompt distribution? Output distribution?

2. What might we want to verify about distributions? (Alignment? Compliance? Diversity
of data?) Delegation? Can it be a property of the distribution?

3. Extending the model to accommodate more settings (better parameter regime):
a. New access models: what type of access do we expect to have (cond. sampling?)?

b. More assumptions: what it distribution admits some structure (e.g. is uniform, over
metric space, We are given some other advice)? Can we get super-fast protocols?



Theorem|[H, Rothblum '25]:

Any interactive proof that a distribution is uniform over N/2 elements, has either:
® The verifier sample complexity is €2 (N2/3), or -

® The honest prover sample complexity is (V).

Theorem|[H, Rothblum ‘25]:

For any constant ¢ € R™, and k € N, any interactive proof that a distribution D satisfies
| D] <

= is e-far from any such distribution, has either:

® The veritier sample complexity is €2 (Nl_l/k), or -

® The honest prover sample complexity is (V).



