
Verifying Properties of Distributions

Based on works with Guy Rothblum

MIT, September 2025

Motivation: Data Science Pipeline
Statistics about the
population

Language model

Loss-minimizing
predictor h

Gather valuable
dataset

Analyze using
sophisticated or

extensive algorithm

Arrive at useful
conclusions

Statistics about the
population

Language model

Loss-minimizing
predictor h

Gather valuable
dataset

Analyze using
sophisticated or

extensive algorithm

Arrive at useful
conclusions

Motivation: Data Science Pipeline

Statistics about the
population

Language model

Loss-minimizing
predictor h

Data Science: Correct?
Indepedent sample from

correct distribution?

Gather valuable
dataset

Analyze using
sophisticated or

extensive algorithm

Arrive at useful
conclusions

Was it run correctly?

Statistics about the
population

Language model

Loss-minimizing
predictor h

Data Science: Correct?

Can we verify the output was correct, given samples from
correct distribution?

Trust me, it’s
a chicken

Running the algorithm on many
samples from , yields a chicken

𝒜
D

Can we verify claims about , without
replication?

D

Distribution Testing [GGR’96, BFRSW’00]
ε ∈ (0,1]Distribution over ,D [N]

103

Distribution Testing [GGR’96, BFRSW’00]
ε ∈ (0,1]Distribution over ,D [N]

Distribution Testing [GGR’96, BFRSW’00]
ε ∈ (0,1]Distribution over ,D [N]

Distribution property (same role as language for decision
problems).

𝒫

Accept if ;
reject if is -far

D ∈ 𝒫
D ε

Distribution Testing [GGR’96, BFRSW’00]
ε ∈ (0,1]Distribution over ,D [N]

Distribution property (same role as language for decision
problems). Examples:

Label invariant properties (does have Shannon Entropy ?
Support size ? Distance from ?), General properties
(can a predictor from class have loss better than over).

𝒫

D k
M δ UN

ℋ α D
Accept if ;
reject if is -far

D ∈ 𝒫
D ε

Distribution Testing [GGR’96, BFRSW’00]
ε ∈ (0,1]Distribution over ,D [N]

Distribution property (same role as language for decision
problems). Examples:

Label invariant properties (does have Shannon Entropy ?
Support size ? Distance from ?), General properties
(can a predictor from class have loss better than over).

𝒫

D k
M δ UN

ℋ α D
Accept if ;
reject if is -far

D ∈ 𝒫
D ε

Sample access, i.e. , is very restrictive.

A full description would be for every .

x ∼ D

(x, D(x)) x ∈ [N]

Distribution Testing [GGR’96, BFRSW’00]
ε ∈ (0,1]Distribution over ,D [N]

Accept if ;
reject if is -far

D ∈ 𝒫
D ε

Indeed, testing via samples alone might be very hard, label invariant
properties require [RRSS07, VV10]Θ(N/log N)

Distribution property (same role as language for decision
problems). Examples:

Label invariant properties (does have Shannon Entropy ?
Support size ? Distance from ?), General properties
(can a predictor from class have loss better than over).

𝒫

D k
M δ UN

ℋ α D

Sample access, i.e. , is very restrictive.

A full description would be for every .

x ∼ D

(x, D(x)) x ∈ [N]

Verifying Properties of Distributions[CG’17, GMR’85]
ε ∈ (0,1]

Prover

Distribution over ,D [N]

D ∈ 𝒫

Verifying Properties of Distributions[CG’17, GMR’85]
ε ∈ (0,1]

Prover

Distribution over ,D [N]

VerifierD ∈ 𝒫

⋮

Accept / Reject

Verifying Properties of Distributions[CG’17, GMR’85]
ε ∈ (0,1]

Prover

Distribution over ,D [N]

VerifierD ∈ 𝒫

⋮

Accept / Reject

Completeness: , V
accepts w.h.p.

Soundness: if is -far from
satisfying , cheating prover

, V rejects whp.

D ∈ 𝒫

D ε
𝒫 ∀

P*

Tolerant verification: approximate
distance to property up to ε

Verifying Properties of Distributions[CG’17, GMR’85]
ε ∈ (0,1]

Prover

Distribution over ,D [N]

VerifierD ∈ 𝒫

⋮

Accept / Reject

Completeness: , V
accepts w.h.p.

Soundness: if is -far from
satisfying , cheating prover

, V rejects whp.

D ∈ 𝒫

D ε
𝒫 ∀

P*

Tolerant verification: approximate
distance to property up to ε

Efficient verification: V’s samples
& runtime, comm., #of rounds.

Efficient proof: P’s samples, P’s
runtime.

Prover

Distribution over ,D [N]

Verifier

Accept / Reject

Trivial Solutions:

1. No communication (replication). Verifier
ignores prover, repeats computation or
learns (using samples.)

2. High communication complexity: P sends
 , verifier “identity tests”,

using samples.

Communication Complexity: .

D O (N ⋅ ε−2)

(x, D(x)) ∀x ∈ [N]
O (N ⋅ ρ−2)

Ω̃ (N)

Verifying Properties of Distributions[CG’17, GMR’85]

ε ∈ (0,1]

D ∈ 𝒫

Prover Verifier

Accept / Reject

1. No communication (replication). Verifier
ignores prover, repeats computation or
learns (using samples.)

2. High communication complexity: P sends
 , verifier “identity tests”,

using samples.

Communication Complexity: .

D O (N ⋅ ε−2)

(x, D(x)) ∀x ∈ [N]
O (N ⋅ ε−2)

Ω̃ (N)

Trivial Solutions:

Verifying Properties of Distributions[CG’17, GMR’85]
Distribution over ,D [N]

ε ∈ (0,1]

D ∈ 𝒫

Results Overview (joint work with Guy Rothblum)

Property Family
V Sample

Complexity
Comm.

Complexity
Honest P Sample

Complexity* Notes

Label-invariant Õ (⋅ ε−4) Õ (N1/2 ⋅ ε−4) Õ (N)

of
Messages

2

*Ignoring factorspoly(ε−1)

N1/2

Property Family
V Sample

Complexity
Comm.

Complexity
Honest P Sample

Complexity* Notes

Label-invariant Õ (⋅ ε−4) Õ (N1/2 ⋅ ε−4) Õ (N)

Label-invariant Õ (N2/3 ⋅ ε−6) Õ (N2/3 ⋅ ε−6) Õ (N) Public-
coin

of
Messages

2

2

*Ignoring factorspoly(ε−1)

N1/2

Results Overview (joint work with Guy Rothblum)

Property Family
V Sample

Complexity
Comm.

Complexity
Honest P Sample

Complexity* Notes

Label-invariant Õ (⋅ ε−4) Õ (N1/2 ⋅ ε−4) Õ (N)

Label-invariant Õ (N2/3 ⋅ ε−6) Õ (N2/3 ⋅ ε−6) Õ (N) Public-
coin

Given complete description ,
 approximated by low

depth circuit / low space TM

(x, D(x))
TV(D, 𝒫) Õ (N1.1)

of
Messages

polylog(N)

2

2

Õ (N0.9)

*Ignoring factorspoly(ε−1)

N1/2

⋅ poly(ε−1)
Õ (N0.95)

⋅ poly(ε−1)

Results Overview (joint work with Guy Rothblum)

Property Family
V Sample

Complexity
Comm.

Complexity
Honest P Sample

Complexity* Notes

Label-invariant Õ (⋅ ε−4) Õ (N1/2 ⋅ ε−4) Õ (N)

Label-invariant Õ (N2/3 ⋅ ε−6) Õ (N2/3 ⋅ ε−6) Õ (N) Public-
coin

Given complete description ,
 approximated by low

depth circuit / low space TM

(x, D(x))
TV(D, 𝒫) Õ (N1.1)

of
Messages

polylog(N)

2

2

Õ (N0.9)

*Ignoring factorspoly(ε−1)

N1/2

⋅ poly(ε−1)
Õ (N0.95)

⋅ poly(ε−1)

Given complete description ,
 approximated by poly-
time algorithm

(x, D(x))
TV(D, 𝒫)

Assuming
CRHO (N1/2 ⋅ ε−2) Õ (N1/2 ⋅ ε−2) Õ (N)4

Results Overview (joint work with Guy Rothblum)

Property Family
V Sample

Complexity
Comm.

Complexity
Honest P Sample

Complexity* Notes

Label-invariant Õ (⋅ ε−4) Õ (N1/2 ⋅ ε−4) Õ (N)

Label-invariant Õ (N2/3 ⋅ ε−6) Õ (N2/3 ⋅ ε−6) Õ (N) Public-
coin

Given complete description ,
 approximated by low

depth circuit / low space TM

(x, D(x))
TV(D, 𝒫) Õ (N1.1)

of
Messages

polylog(N)

2

2

Õ (N0.9)

*Ignoring factorspoly(ε−1)

N1/2

⋅ poly(ε−1)
Õ (N0.95)

⋅ poly(ε−1)

Given complete description ,
 approximated by poly-
time algorithm

(x, D(x))
TV(D, 𝒫)

Assuming
CRHO (N1/2 ⋅ ε−2) Õ (N1/2 ⋅ ε−2) Õ (N)4

Results Overview (joint work with Guy Rothblum)

Property Family
V Sample

Complexity
Comm.

Complexity
Honest P Sample

Complexity* Notes

Label-invariant Õ (⋅ ε−4) Õ (N1/2 ⋅ ε−4) Õ (N)

Label-invariant Õ (N2/3 ⋅ ε−6) Õ (N2/3 ⋅ ε−6) Õ (N) Public-
coin

Given complete description ,
 approximated by low

depth circuit / low space TM

(x, D(x))
TV(D, 𝒫) Õ (N1.1)

of
Messages

polylog(N)

2

2

Õ (N0.9)

*Ignoring factorspoly(ε−1)

N1/2

⋅ poly(ε−1)
Õ (N0.95)

⋅ poly(ε−1)

Given complete description ,
 approximated by poly-
time algorithm

(x, D(x))
TV(D, 𝒫)

Assuming
CRHO (N1/2 ⋅ ε−2) Õ (N1/2 ⋅ ε−2) Õ (N)4

Results Overview (joint work with Guy Rothblum)

My goals for the first hour:

Show that with sample access and communication with a prover we
can do many unexpected things!

Demonstrate tools and ideas.

questions to have in mind: what assumptions over the distribution
can help us? What settings might this capture?

Verified Tagged Sample Protocol
Goal: verifiably obtain a tagged sample, i.e. where i.i.d. , while
requiring samples.

• Very useful:

• Approximate the probability histogram. E.g. half the samples have probability
 0.5 mass of on elements w.p, there are (approx.)

elements with probability .

• Approximate distance from fixed distribution given explicitly.

• More…

Without prover: requires samples.

(x, D(x)) x ∼ D
≪ N

2/N ⟹ ≈ D 2/N ⟹ N/4
2/N

Q

O(N)

Verified Tagged Sample Protocol
Goal: verifiably obtain a tagged sample, i.e. where i.i.d. , while
requiring samples.

• Very useful:

• Approximate the probability histogram. E.g. half the samples have probability
 0.5 mass of on elements w.p, there are (approx.)

elements with probability .

• Approximate distance from fixed distribution given explicitly.

• More…

Without prover: requires samples.

(x, D(x)) x ∼ D
≪ N

2/N ⟹ ≈ D 2/N ⟹ N/4
2/N

Q

O(N)

Many samples

Prover

Distribution over D [N]
Few samples

Verifier

Completeness: if w.h.p. V
accepts.

Soundness: w.h.p. either V rejects or
outputs a collection of , where
for almost all samples .

Verifier samp. complexity, runtime .

D̃ (xi) = D(xi) →

∀P*
(x, πx) πx ≈ D(x)

x

Õ (N1/2)

Goal:

Verified Tagged Sample Protocol

x1, …, xs

D̃ (x1), … D̃ (xs)

Many samples

Prover

Distribution over D [N]
Few samples

Verifier

Completeness: if w.h.p. V
accepts.

Soundness: w.h.p. either V rejects or
outputs a collection of , where
for almost all samples .

Verifier samp. complexity, runtime .

D̃ (xi) = D(xi) →

∀P*
(x, πx) πx ≈ D(x)

x

Õ (N1/2)

Goal:

Verified Tagged Sample Protocol

x1, …, xs

D̃ (x1), … D̃ (xs)

Simplifying assumption: D(x) ∈ { 1
N

,
2
N

, …,
100
N }

Obtaining Verified Tagged Sample

VP

VP

Set , repeat times:

1. Flip fair coin .
2. If , draw ; else .

s = θ̃ (N) 2s

b
b = 0 x ∼ D x ∼ U[N]

Obtaining Verified Tagged Sample

Obtaining Verified Tagged Sample

VP

Probability of each by xi D

Set , repeat times:

1. Flip fair coin .
2. If , draw ; else .

s = θ̃ (N) 2s

b
b = 0 x ∼ D x ∼ U[N]

(x1, x2, …x2s)

V’s secret

{i : bi = 0}, {i : bi = 1}

Obtaining Verified Tagged Sample

If P is honest, V obtained a correct tagged sample

VP

Probability of each by xi D

Set , repeat times:

1. Flip fair coin .
2. If , draw ; else .

s = θ̃ (N) 2s

b
b = 0 x ∼ D x ∼ U[N]

(x1, x2, …x2s)

{i : bi = 0}, {i : bi = 1}
V’s secret

Obtaining Verified Tagged Sample

VP

Set , repeat times:

1. Flip fair coin .
2. If , draw ; else .

s = θ̃ (N) 2s

b
b = 0 x ∼ D x ∼ U[N]

V’s secret

{i : bi = 0}, {i : bi = 1}

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

t = θ(s)

Obtaining Verified Tagged Sample

VP

Set , repeat times:

1. Flip fair coin .
2. If , draw ; else .

s = θ̃ (N) 2s

b
b = 0 x ∼ D x ∼ U[N]

Look e.g. at the samples with alleged prob. :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

2/N
⋅

2
N

⋅

Verifier tests

V’s secret

{i : bi = 0}, {i : bi = 1}

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

Obtaining Verified Tagged Sample

VP

Set , repeat times:

1. Flip fair coin .
2. If , draw ; else .

s = θ̃ (N) 2s

b
b = 0 x ∼ D x ∼ U[N]

Look e.g. at the samples with alleged prob. :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

2/N
⋅

2
N

⋅

Verifier tests

V’s secret

{i : bi = 0}, {i : bi = 1}

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

t

Obtaining Verified Tagged Sample

VP

Set , repeat times:

1. Flip fair coin .
2. If , draw ; else .

s = θ̃ (N) 2s

b
b = 0 x ∼ D x ∼ U[N]

Look e.g. at the samples with alleged prob. :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

2/N
⋅

2
N

⋅

Draw fresh D-samples, and

check of them have

alleged prob. .

s

s (t ⋅
2
N)

2/N

Verifier tests

V’s secret

{i : bi = 0}, {i : bi = 1}

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

Obtaining Verified Tagged Sample

VP

Set , repeat times:

1. Flip fair coin .
2. If , draw ; else .

s = θ̃ (N) 2s

b
b = 0 x ∼ D x ∼ U[N]

Look e.g. at the samples with alleged prob. :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

2/N
⋅

2
N

⋅

Verifier tests

V’s secret

{i : bi = 0}, {i : bi = 1}

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

Do this for all

{ 1
N

,
2
N

, …,
100
N }

Draw fresh D-samples, and

check of them have

alleged prob. .

s

s (t ⋅
2
N)

2/N

Obtaining Verified Tagged Sample

VP

Set , repeat times:

1. Flip fair coin .
2. If , draw ; else .

s = θ̃ (N) 2s

b
b = 0 x ∼ D x ∼ U[N]

Look e.g. at the samples with alleged prob. :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

2/N
⋅

2
N

⋅

Verifier tests

V’s secret

{i : bi = 0}, {i : bi = 1}

Completeness

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

Draw fresh D-samples, and

check of them have

alleged prob. .

s

s (t ⋅
2
N)

2/N

Soundness Analysis
Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

How to Produce ? ((b1, x1), …(b2s, x2s))

Soundness Analysis

How to Produce ? ((b1, x1), …(b2s, x2s))

1. Draw

2. If , ; o.w.

b

b = 0 x ∼ D x ∼ U[N]

1. Draw

2. , , w.p. ; o.w.

x ∼
1
2

D +
1
2

U[N]

∀x b |x = 0
D(x)

D(x) + 1/N
b |x = 1

I, “ then ” b x II, “ then ” x b

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis

1. Draw

2. If , ; o.w.

b

b = 0 x ∼ D x ∼ U[N]

1. Draw

2. , , w.p. ; o.w.

x ∼
1
2

D +
1
2

U[N]

∀x b |x = 0
D(x)

D(x) + 1/N
b |x = 1

I, “ then ” b x II, “ then ” x b

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

≡

How to Produce ? ((b1, x1), …(b2s, x2s))

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis

1. Draw

2. If , ; o.w.

b

b = 0 x ∼ D x ∼ U[N]

1. Draw

2. , , w.p. ; o.w.

x ∼
1
2

D +
1
2

U[N]

∀x b |x = 0
D(x)

D(x) + 1/N
b |x = 1

I, “ then ” b x II, “ then ” x b

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

≡

How to Produce ? ((b1, x1), …(b2s, x2s))

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

P’s perspective: V decides AFTER P’s
message.

(bi)

Soundness Analysis
(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

1. Draw

2. , , w.p. ; o.w.

x ∼
1
2

D +
1
2

U[N]

∀x b |x = 0
D(x)

D(x) + 1/N
b |x = 1

II, “ then ” x b

 determined AFTER prover's message:(bi)

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis

Test 1 passed:

Test 2 passed:

𝔼x∼u{x1,…,xt} [
Pr (b |x = 1)
Pr (b |x = 0)] =

1
2

𝔼x∼u{x1,…,xt} [D(x)] =
2
N

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

1. Draw

2. , , w.p. ; o.w.

x ∼
1
2

D +
1
2

U[N]

∀x b |x = 0
D(x)

D(x) + 1/N
b |x = 1

II, “ then ” x b

 determined AFTER prover's message:(bi)

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis

Test 1 passed:

Test 2 passed:

𝔼x∼u{x1,…,xt} [
Pr (b |x = 1)
Pr (b |x = 0)] =

1
2

𝔼x∼u{x1,…,xt} [D(x)] =
2
N

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

1. Draw

2. , , w.p. ; o.w.

x ∼
1
2

D +
1
2

U[N]

∀x b |x = 0
D(x)

D(x) + 1/N
b |x = 1

II, “ then ” x b

 determined AFTER prover's message:(bi) 1/N
1/N + D(x)

D(x)
1/N + D(x)

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis
(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

1. Draw

2. , , w.p. ; o.w.

x ∼
1
2

D +
1
2

U[N]

∀x b |x = 0
D(x)

D(x) + 1/N
b |x = 1

II, “ then ” x b

 determined AFTER prover's message:(bi)
Test 1 passed:

Test 2 passed:

𝔼x∼u{x1,…,xt} [Pr)
Pr ()] =

1
2

𝔼x∼u{x1,…,xt} [D(x)] =
2
N

1/N
D(x)

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis
(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

1. Draw

2. , , w.p. ; o.w.

x ∼
1
2

D +
1
2

U[N]

∀x b |x = 0
D(x)

D(x) + 1/N
b |x = 1

II, “ then ” x b

 determined AFTER prover's message:(bi)
Test 1 passed:

Test 2 passed:

𝔼x∼u{x1,…,xt} [Pr)
Pr ()] =

1
2

𝔼x∼u{x1,…,xt} [D(x)] =
2
N

1
D(x)

N

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis
(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

 determined AFTER prover's message:(bi)
Test 1 passed:

Test 2 passed:

𝔼x∼u{x1,…,xt} [Pr)
Pr ()] =

1
2

𝔼x∼u{x1,…,xt} [D(x)] =
2
N

1
D(x)

N
Jensen’s Inequality is a constant r.v.⟹ D(X)

∀x, D(x) = 𝔼[D(X)] = 2/N

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis
(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

 determined AFTER prover's message:(bi)

Equations hold only if
True probability = Alleged probability

Jensen’s Inequality is a constant r.v.⟹ D(X)
∀x, D(x) = 𝔼[D(X)] = 2/N

Test 1 passed:

Test 2 passed:

𝔼x∼u{x1,…,xt} [Pr)
Pr ()] =

1
2

𝔼x∼u{x1,…,xt} [D(x)] =
2
N

1
D(x)

N

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis

Test 1 passed:

Test 2 passed:

𝔼x∼u{x1,…,xt} [1
D(x)] N

2

𝔼x∼u{x1,…,xt} [D(x)] 2
N

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

 determined AFTER prover's message:(bi)

More accurately
1. Samples tagged .
2. Equations approximately hold.

[2/N, (1 + ε) ⋅ 2/N]≈

≈

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Soundness Analysis

Test 1 passed:

Test 2 passed:

𝔼x∼u{x1,…,xt} [1
D(x)] N

2

𝔼x∼u{x1,…,xt} [D(x)] 2
N

(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

 determined AFTER prover's message:(bi)

More accurately
1. Samples tagged .
2. Equations approximately hold.

[2/N, (1 + ε) ⋅ 2/N]≈

≈

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅
Instead of possible

probabilities, possible
probabilities

100
O (log (N/ε))

Soundness Analysis
(x1, x2, …xt)

(
2
N

,
2
N

, …
2
N

)

 determined AFTER prover's message:(bi)

Alleged probabilities far from correct
Equations don’t hold even approximately.

⟹
Claim:Test 1 passed:

Test 2 passed:

𝔼x∼u{x1,…,xt} [1
D(x)] N

2

𝔼x∼u{x1,…,xt} [D(x)] 2
N

≈

≈

Look at the samples tagged :

1. Consistency: (# of D-samples) = 2 (# of U-samples)

2. Correct avg. probability: total mass is (total # of samples)

t 2/N
⋅

2
N

⋅

Recap
• Via sample access, we can verifiably obtain for many .(x, D(x)) x ∼ D

Recap
• Via sample access, we can verifiably obtain for many .

• Immediate corollary: verify any label-invariant property.

(x, D(x)) x ∼ D

Recap
• Via sample access, we can verifiably obtain for many .

• Immediate corollary: verify any label-invariant property.

• Next - leverage to obtain:

(x, D(x)) x ∼ D

Theorem [HR’24]: very rich family of properties has an interactive proof with:

• Verifier sample complexity , runtime, and communication .

• Honest Prover time , sample complexity .

Õ (N0.9) poly(ε−1) Õ (N0.95) poly(ε−1)
poly(N) Õ (N1.1) poly(ε−1)

Recap
• Via sample access, we can verifiably obtain for many .

• Immediate corollary: verify any label-invariant property.

• Next - leverage to obtain:

(x, D(x)) x ∼ D

Theorem [HR’24]: very rich family of properties has an interactive proof with:

• Verifier sample complexity , runtime, and communication .

• Honest Prover time , sample complexity .

Õ (N0.9) poly(ε−1) Õ (N0.95) poly(ε−1)
poly(N) Õ (N1.1) poly(ε−1)

Given complete description
,

approximated by low depth
circuit / low space TM

∀x, (x, D(x)) TV(D, 𝒫)

Summary

Main takeaway - useful tool: given only sample access, many claims
can be verified much more efficiently than repeating computation.

Not discussed:

• Lower bounds - sample lower bounds; proving is harder than testing.

• Crypto assumptions - reduce sample (what about communication?)

• Super-fast protocol for specific problems (verifying distribution are far).

Summary

Main takeaway - useful tool: given only sample access, many claims
can be verified much more efficiently than repeating computation.

Not discussed:

• Lower bounds - sample lower bounds; proving is harder than testing.

• Crypto assumptions - reduce sample (what about communication?)

• Super-fast protocols for specific problems (e.g. verifying distributions are far).

Questions for Discussion

Moving forward, to the context of AI:
1. Where do we find distributions accessible by samples (and not queries)?

 Choosing training set? Prompt distribution? Output distribution?

2. What might we want to verify about distributions? (Alignment? Compliance? Diversity
of data?) Delegation? Can it be a property of the distribution?

3. Extending the model to accommodate more settings (better parameter regime):

a. New access models: what type of access do we expect to have (cond. sampling?)?

b. More assumptions: what if distribution admits some structure (e.g. is uniform, over
metric space, We are given some other advice)? Can we get super-fast protocols?

Theorem[H, Rothblum ’25]:
Any interactive proof that a distribution is uniform over elements, has either:

• The verifier sample complexity is , or -

• The honest prover sample complexity is .

N/2

Ω (N2/3)
Ω(N)

Theorem[H, Rothblum ’25]:
For any constant , and , any interactive proof that a distribution satisfies

, or is -far from any such distribution, has either:

• The verifier sample complexity is , or -

• The honest prover sample complexity is .

c ∈ ℝ+ k ∈ ℕ D
∥D∥k ≤

c
N1−1/k

ε

Ω (N1−1/k)
Ω(N)

