#### Verifying Properties of Distributions

Based on works with Guy Rothblum

## Motivation: Data Science Pipeline



Gather valuable dataset

Analyze using sophisticated or extensive algorithm

Arrive at useful conclusions

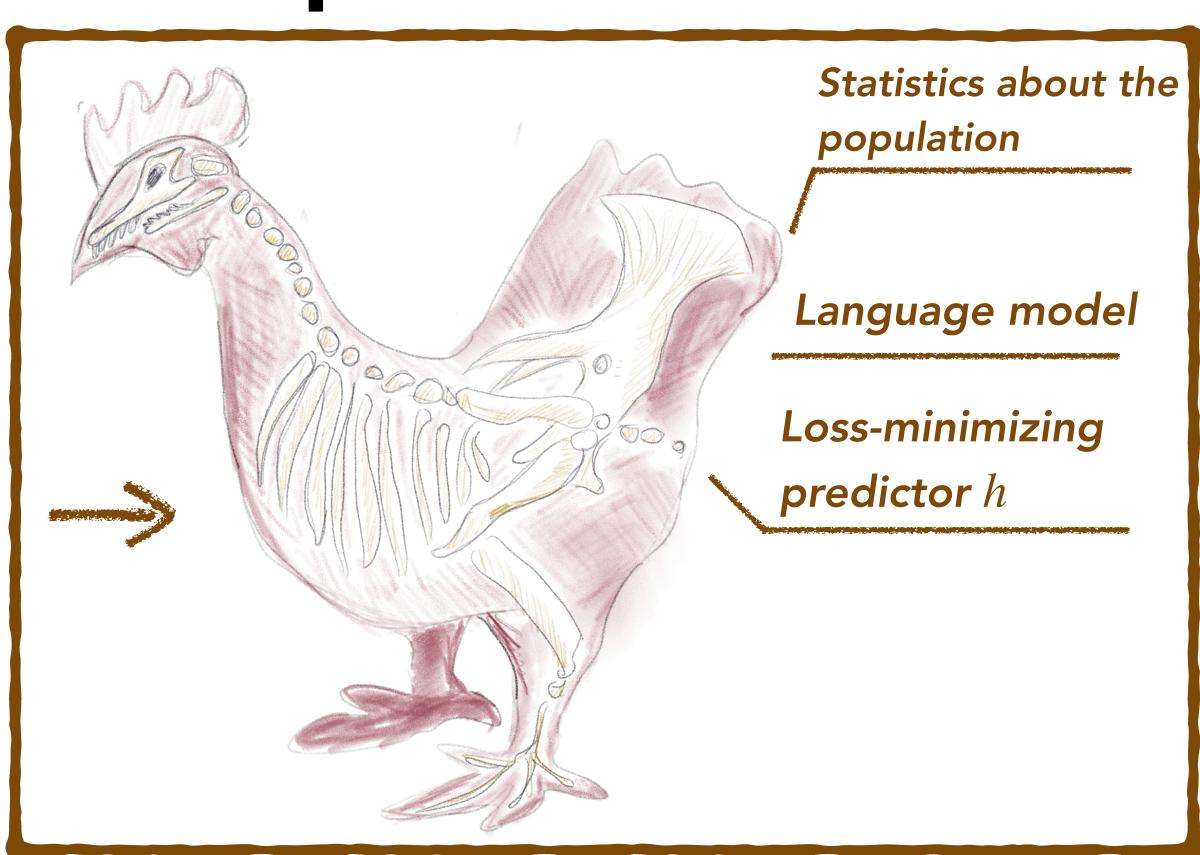
# Motivation: Data Science Pipeline



Gather valuable dataset



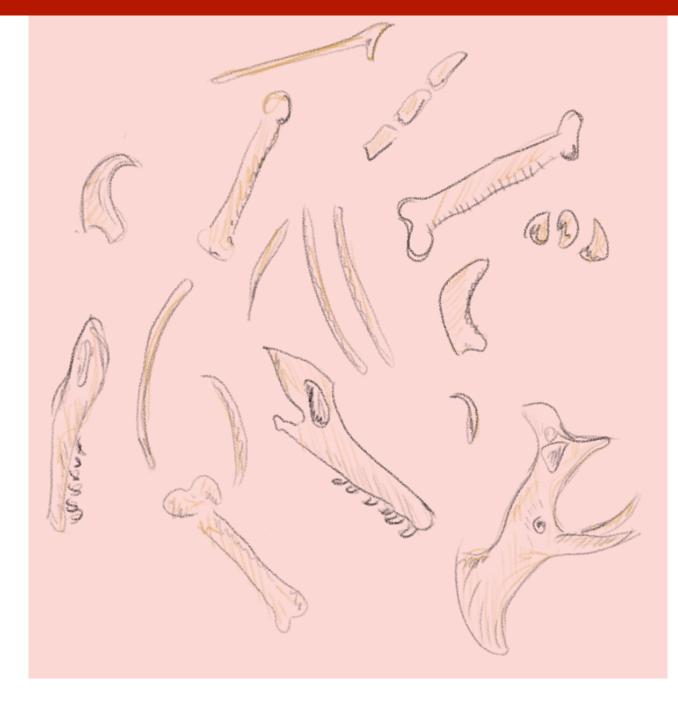
Analyze using sophisticated or extensive algorithm



Arrive at useful conclusions

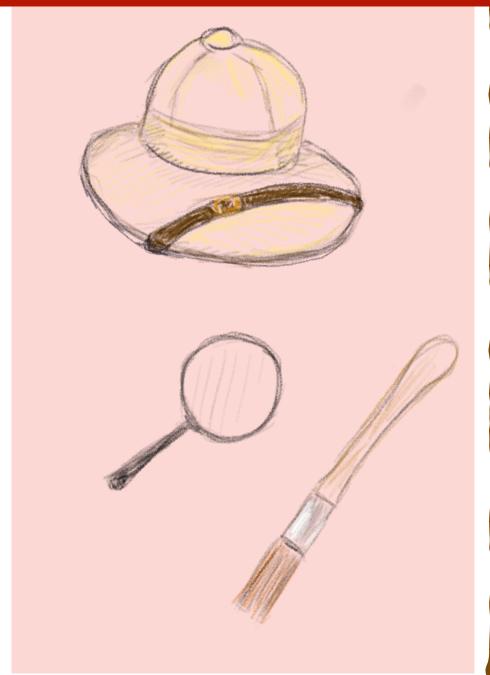
#### Data Science: Correct?

Indepedent sample from correct distribution?

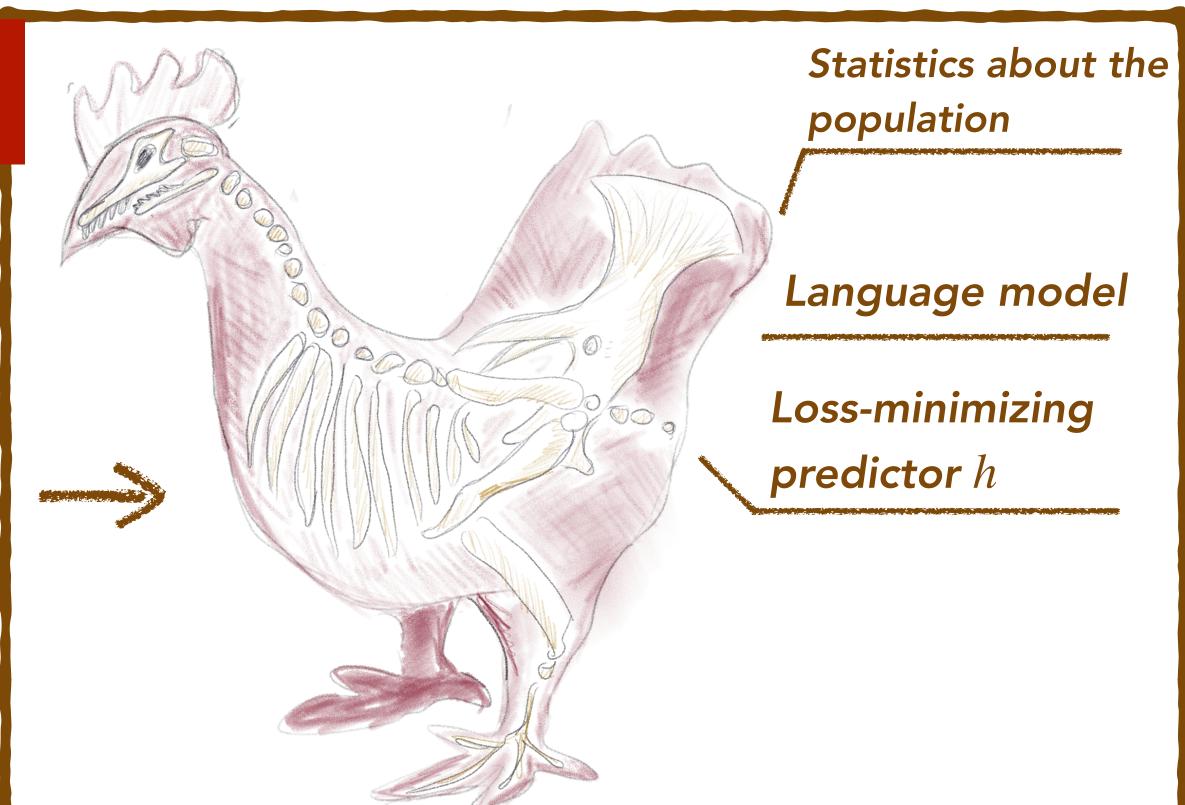


Gather valuable dataset

Was it run correctly?

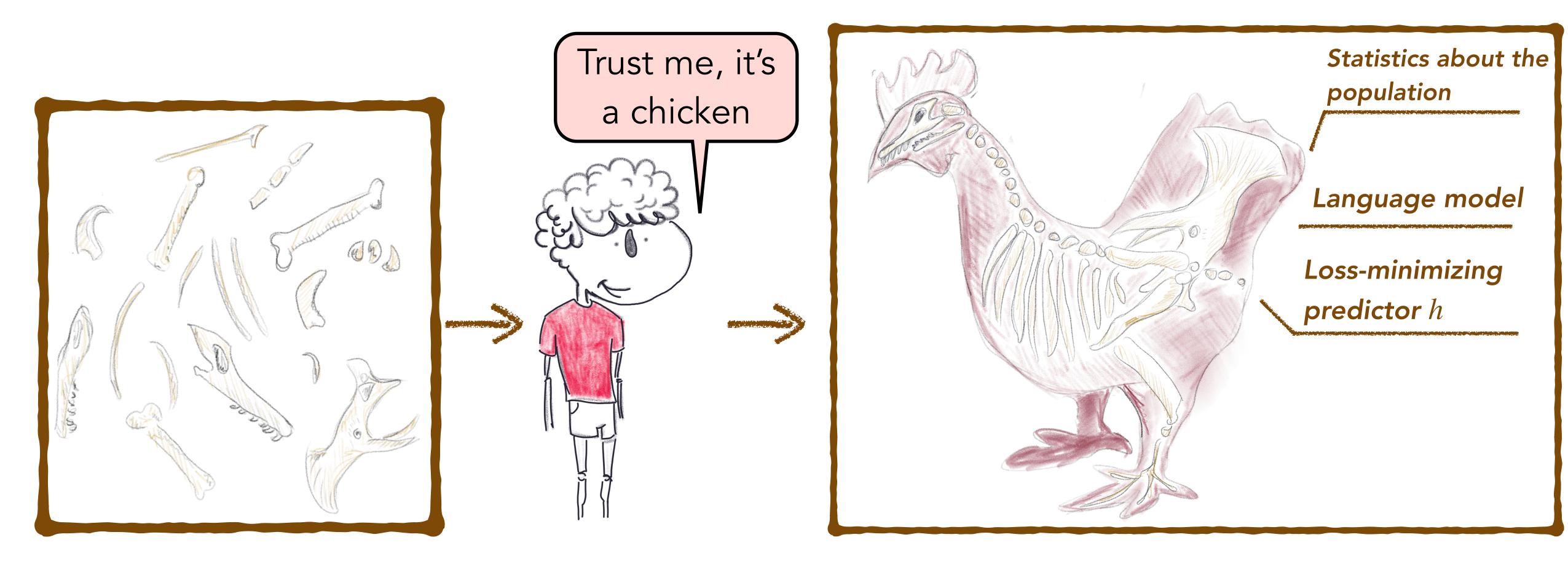


Analyze using sophisticated or extensive algorithm



Arrive at useful conclusions

#### Data Science: Correct?



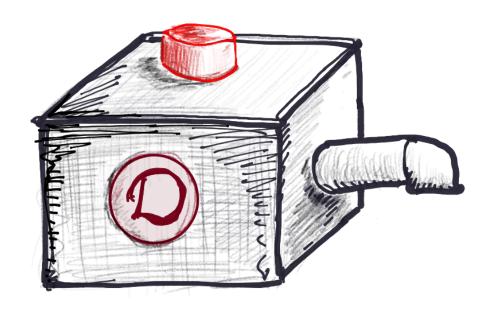
Can we <u>verify</u> the output was <u>correct</u>, given samples from correct distribution?



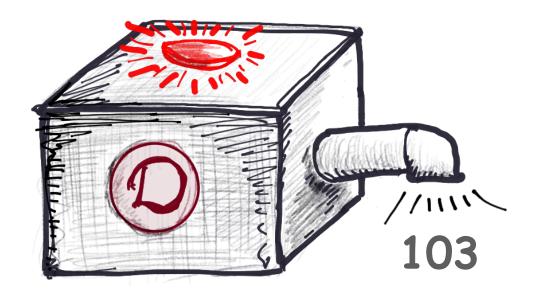
Running the algorithm  $\mathscr{A}$  on many samples from D, yields a chicken

# Can we verify claims about D, without replication?

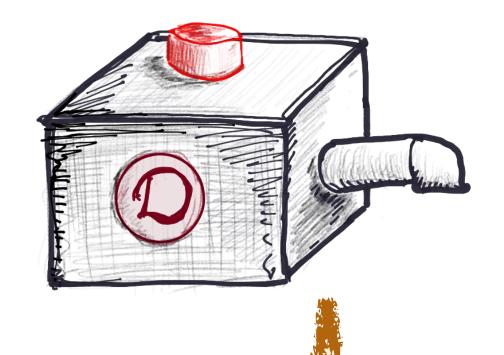
Distribution D over [N],  $\varepsilon \in (0,1]$ 



Distribution D over [N],  $\varepsilon \in (0,1]$ 



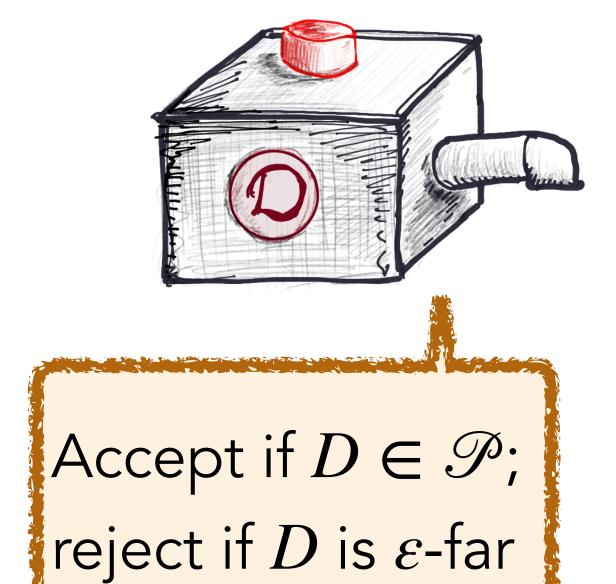
Distribution D over [N],  $\varepsilon \in (0,1]$ 



**Distribution property**  $\mathcal{P}$  (same role as language for decision problems).

Accept if  $D\in\mathcal{P}$ ; reject if D is  $\varepsilon$ -far

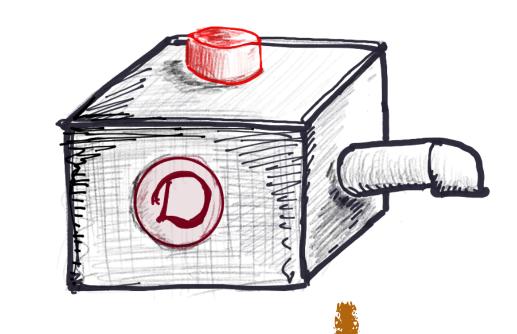
Distribution D over [N],  $\varepsilon \in (0,1]$ 



**Distribution property**  $\mathcal{P}$  (same role as language for decision problems). Examples:

Label invariant properties (does D have Shannon Entropy k? Support size M? Distance  $\delta$  from  $U_N$ ?), General properties (can a predictor from class  $\mathcal{H}$  have loss better than  $\alpha$  over D).

Distribution D over [N],  $\varepsilon \in (0,1]$ 



Accept if  $D \in \mathcal{P}$ ; reject if D is  $\varepsilon$ -far

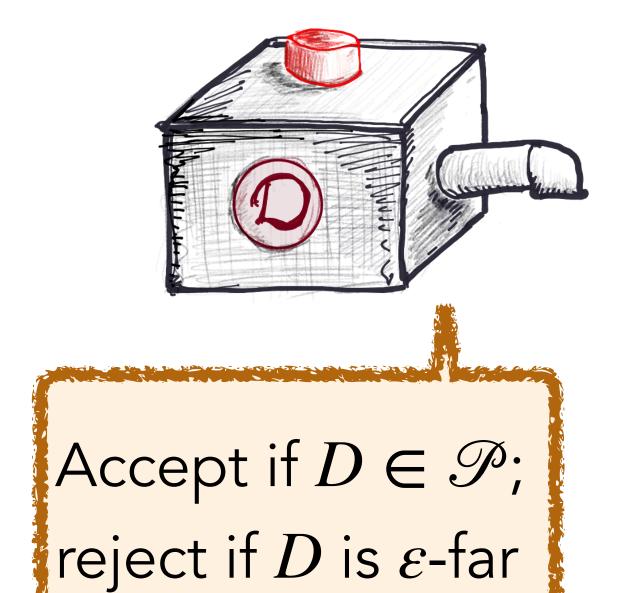
**Distribution property**  $\mathcal{P}$  (same role as language for decision problems). Examples:

Label invariant properties (does D have Shannon Entropy k? Support size M? Distance  $\delta$  from  $U_N$ ?), General properties (can a predictor from class  $\mathcal{H}$  have loss better than  $\alpha$  over D).

Sample access, i.e.  $x \sim D$ , is **very restrictive**.

A full description would be (x, D(x)) for every  $x \in [N]$ .

Distribution D over [N],  $\varepsilon \in (0,1]$ 



**Distribution property**  $\mathcal{P}$  (same role as language for decision problems). Examples:

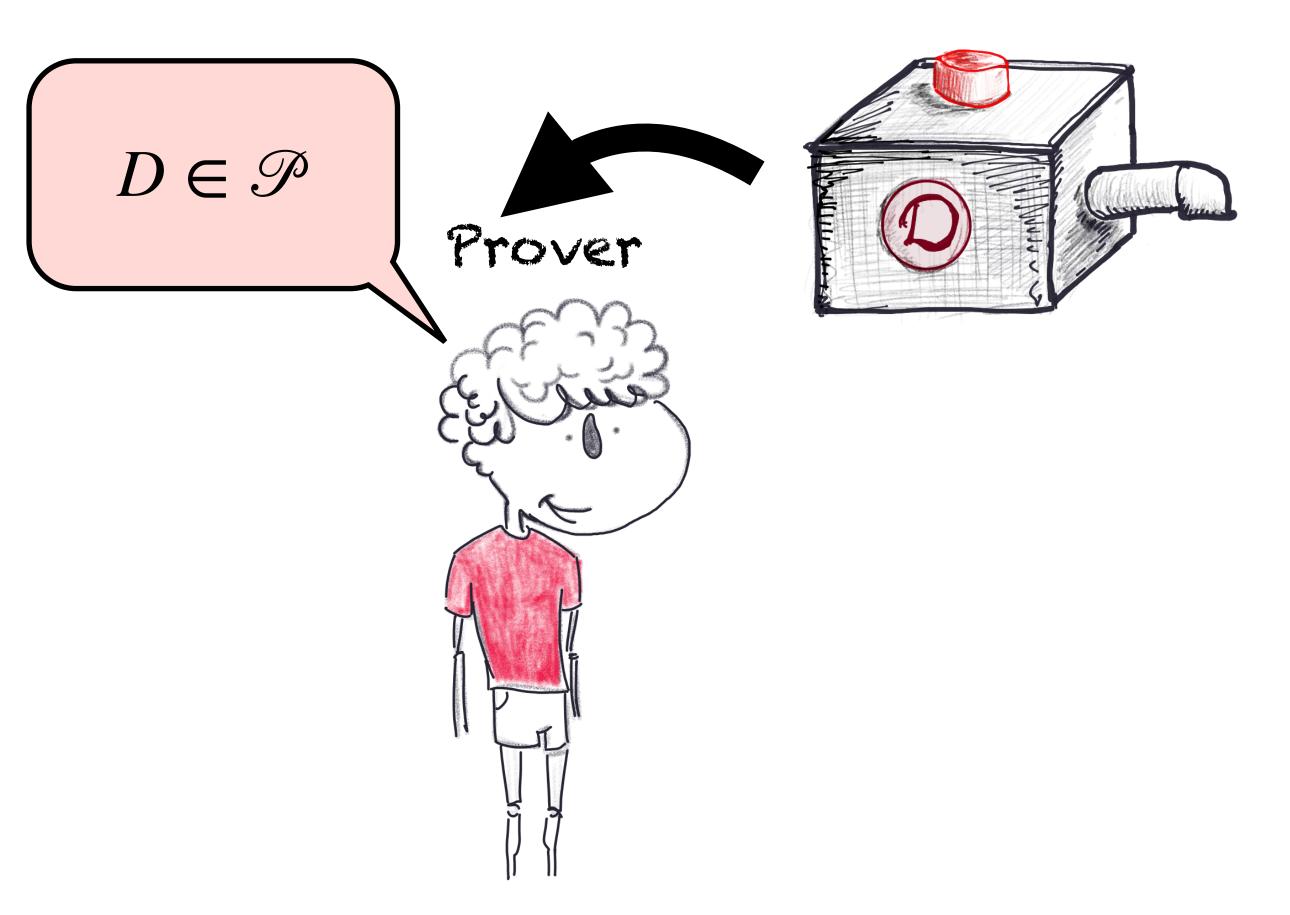
Label invariant properties (does D have Shannon Entropy k? Support size M? Distance  $\delta$  from  $U_N$ ?), General properties (can a predictor from class  $\mathcal H$  have loss better than  $\alpha$  over D).

Sample access, i.e.  $x \sim D$ , is very restrictive.

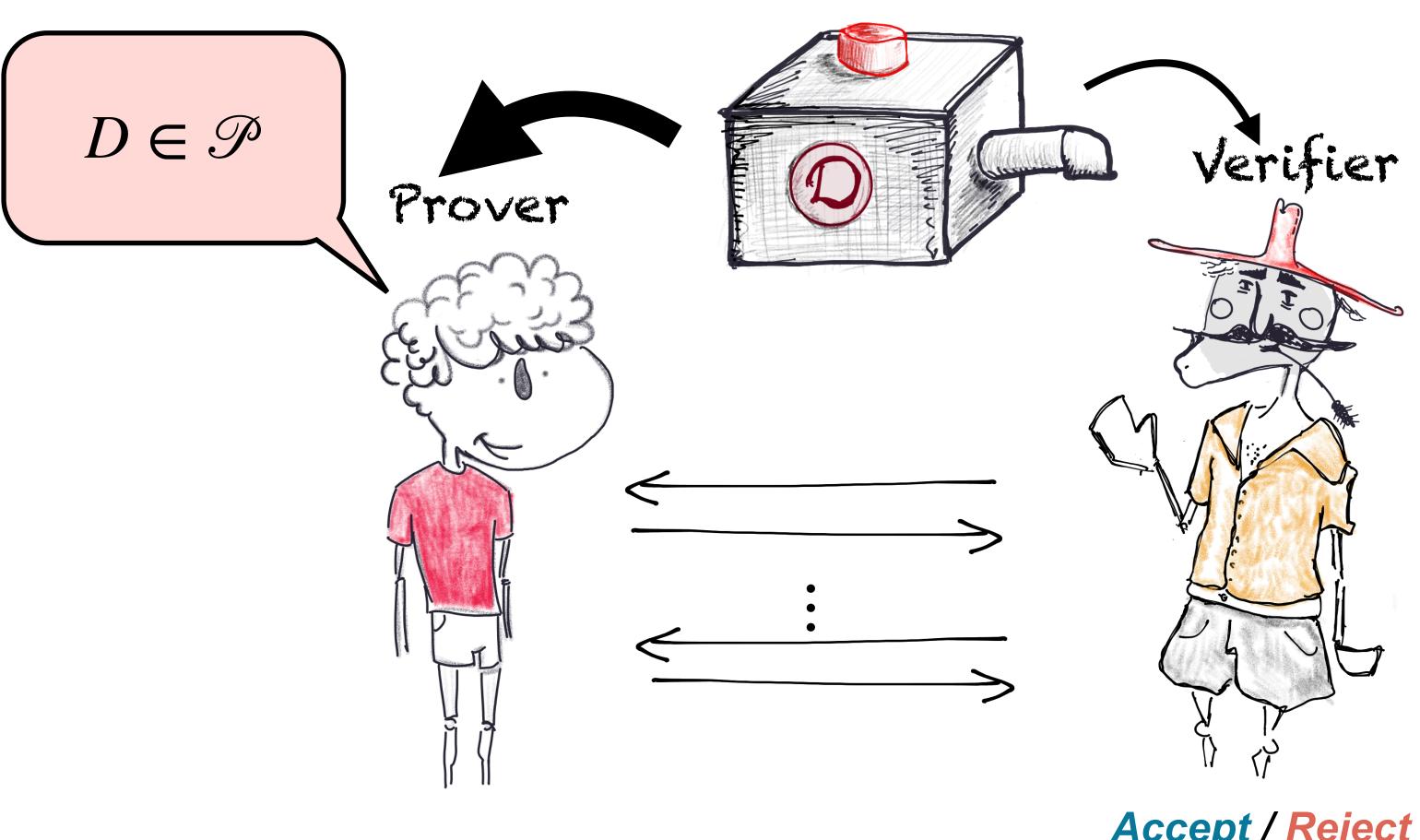
A full description would be (x, D(x)) for every  $x \in [N]$ .

Indeed, testing via samples alone might be very hard, label invariant properties require  $\Theta(N/\log N)$  [RRSS07, VV10]

Distribution D over [N],  $\varepsilon \in (0,1]$ 

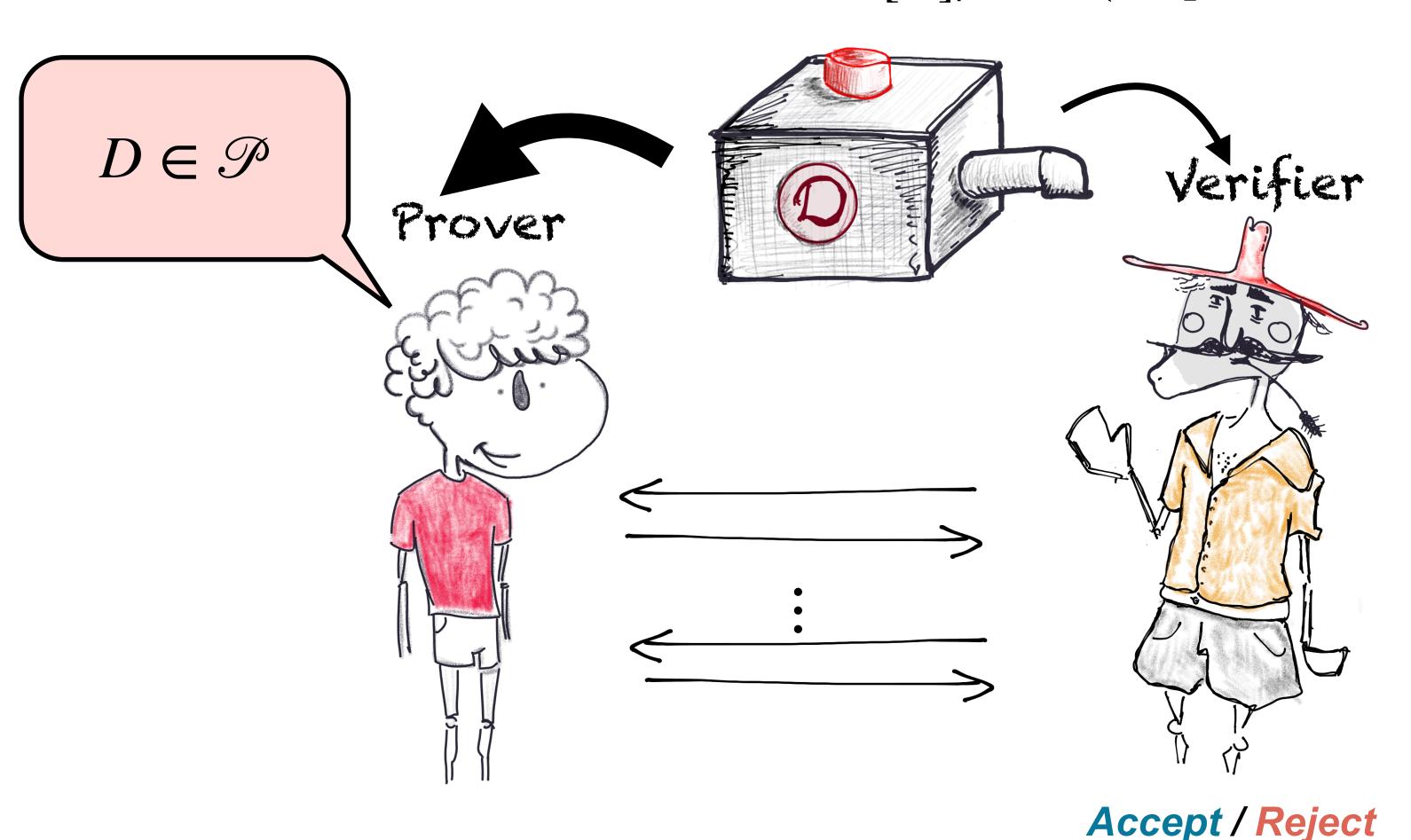


Distribution D over [N],  $\varepsilon \in (0,1]$ 



Accept / Reject

Distribution D over [N],  $\varepsilon \in (0,1]$ 

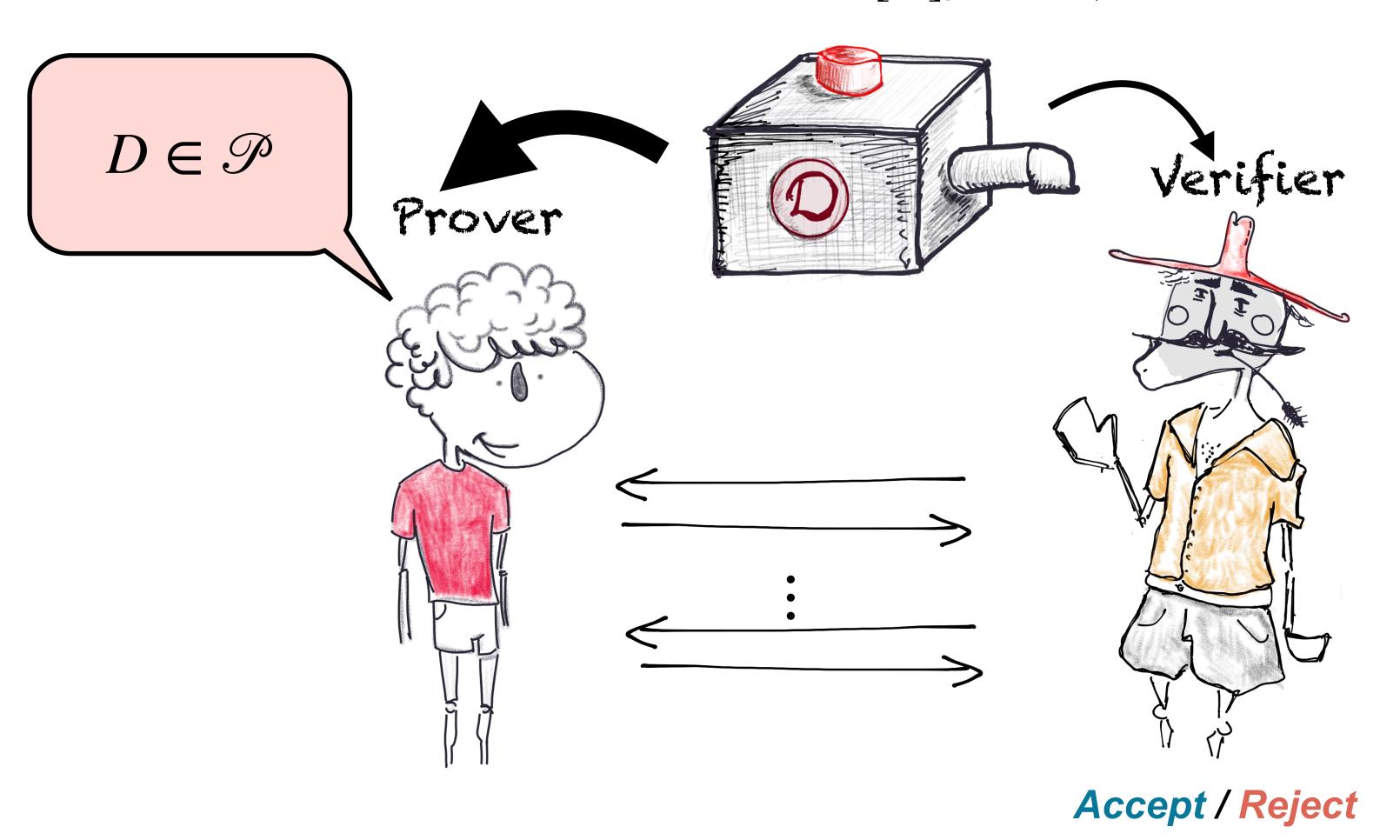


Completeness:  $D \in \mathcal{P}$ , V accepts w.h.p.

**Soundness:** if D is  $\varepsilon$ -far from satisfying  $\mathscr{P}$ ,  $\forall$  cheating prover  $P^*$ ,  $\forall$  rejects whp.

Tolerant verification: approximate distance to property up to  $\varepsilon$ 

Distribution D over [N],  $\varepsilon \in (0,1]$ 



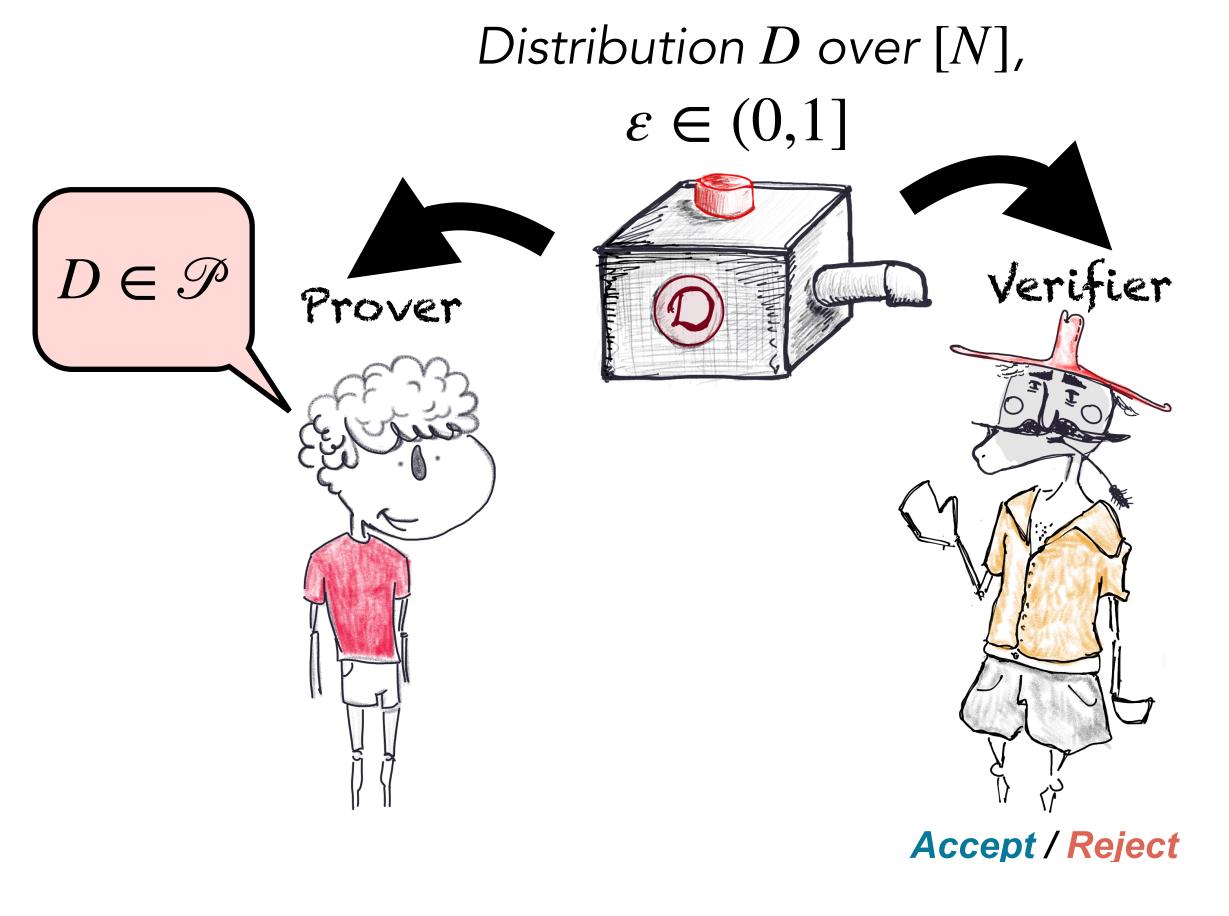
Completeness:  $D \in \mathcal{P}$ , V accepts w.h.p.

**Soundness:** if D is  $\varepsilon$ -far from satisfying  $\mathscr{P}$ ,  $\forall$  cheating prover  $P^*$ ,  $\forall$  rejects whp.

Tolerant verification: approximate distance to property up to  $\varepsilon$ 

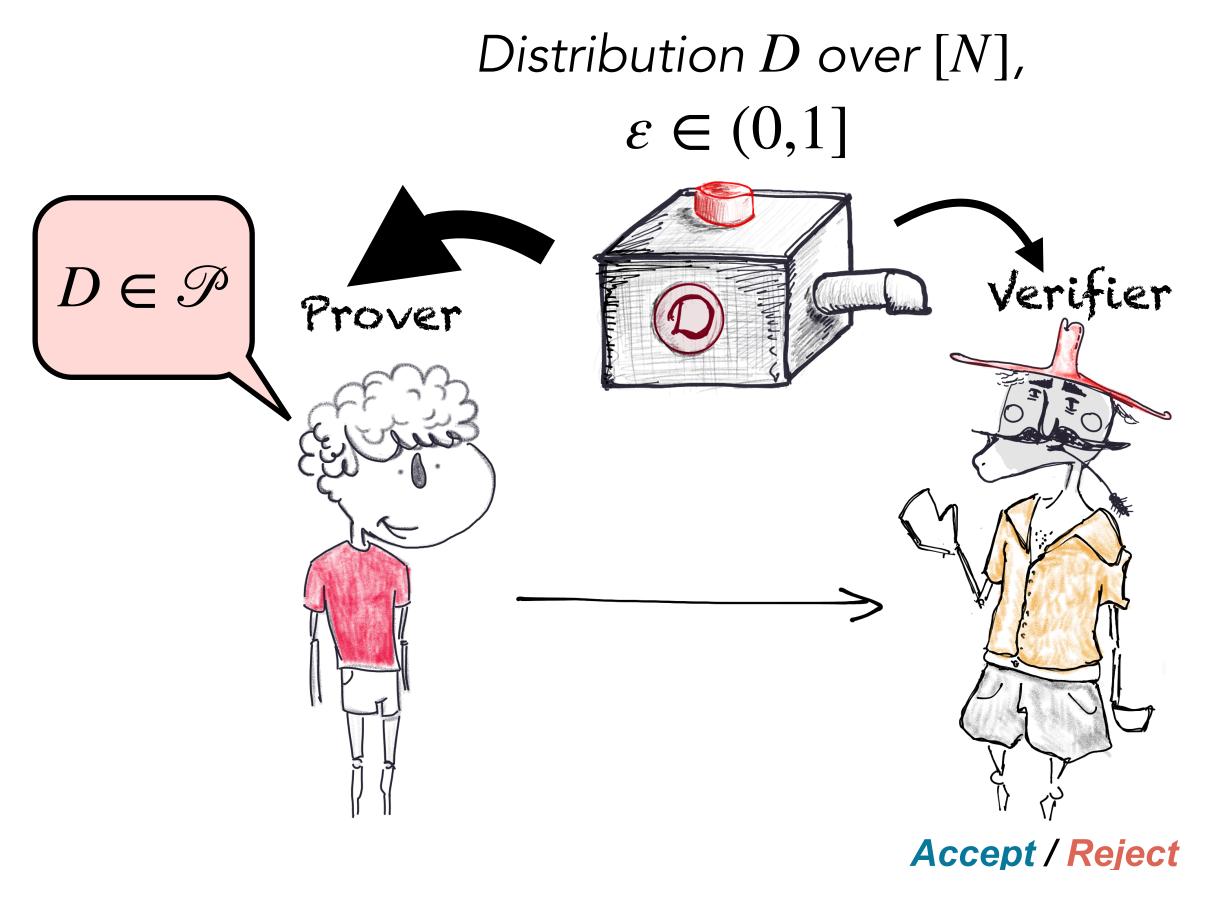
**Efficient verification:** V's samples & runtime, comm., #of rounds.

Efficient proof: P's samples, P's runtime.



#### **Trivial Solutions:**

1. No communication (replication). Verifier ignores prover, repeats computation or learns D (using  $O(N \cdot \varepsilon^{-2})$  samples.)



#### **Trivial Solutions:**

- 1. No communication (replication). Verifier ignores prover, repeats computation or learns D (using  $O(N \cdot \varepsilon^{-2})$  samples.)
- 2. High communication complexity: P sends  $(x,D(x)) \ \forall x \in [N]$ , verifier "identity tests", using  $O\left(\sqrt{N} \cdot \varepsilon^{-2}\right)$  samples. Communication Complexity:  $\Omega(N)$ .

\*Ignoring poly( $\varepsilon^{-1}$ ) factors

| Property Family | V Sample<br>Complexity                                    | Comm.<br>Complexity                                       | # of<br>Messages | Honest P Sample<br>Complexity* | Notes |
|-----------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------|--------------------------------|-------|
| Label-invariant | $\widetilde{O}\left(N^{1/2}\cdot \varepsilon^{-4}\right)$ | $\widetilde{O}\left(N^{1/2}\cdot \varepsilon^{-4}\right)$ | 2                | $\widetilde{O}(N)$             |       |
|                 |                                                           |                                                           |                  |                                |       |
|                 |                                                           |                                                           |                  |                                |       |
|                 |                                                           |                                                           |                  |                                |       |
|                 |                                                           |                                                           |                  |                                |       |

\*Ignoring poly( $\varepsilon^{-1}$ ) factors

| Property Family | V Sample<br>Complexity                                    | Comm.<br>Complexity                                       | # of<br>Messages | Honest P Sample<br>Complexity* | Notes           |
|-----------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------|--------------------------------|-----------------|
| Label-invariant | $\widetilde{O}\left(N^{1/2}\cdot \varepsilon^{-4}\right)$ | $\widetilde{O}\left(N^{1/2}\cdot \varepsilon^{-4}\right)$ | 2                | $\widetilde{O}(N)$             |                 |
| Label-invariant | $\widetilde{O}\left(N^{2/3}\cdot \varepsilon^{-6}\right)$ | $\widetilde{O}\left(N^{2/3}\cdot \varepsilon^{-6}\right)$ | 2                | $\widetilde{O}(N)$             | Public-<br>coin |
|                 |                                                           |                                                           |                  |                                |                 |
|                 |                                                           |                                                           |                  |                                |                 |
|                 |                                                           |                                                           |                  |                                |                 |
|                 |                                                           |                                                           |                  |                                |                 |

| Property Family                                                                                                | V Sample<br>Complexity                                          | Comm.<br>Complexity                                              | # of<br>Messages | Honest P Sample<br>Complexity* | Notes           |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------|--------------------------------|-----------------|
| Label-invariant                                                                                                | $\widetilde{O}\left(N^{1/2}\cdot\varepsilon^{-4}\right)$        | $\widetilde{O}\left(N^{1/2}\cdot \varepsilon^{-4}\right)$        | 2                | $\widetilde{O}(N)$             |                 |
| Label-invariant                                                                                                | $\widetilde{O}\left(N^{2/3}\cdot \varepsilon^{-6}\right)$       | $\widetilde{O}\left(N^{2/3}\cdot \varepsilon^{-6}\right)$        | 2                | $\widetilde{O}(N)$             | Public-<br>coin |
| Given complete description $(x, D(x))$ , $TV(D, \mathcal{P})$ approximated by low depth circuit / low space TM | $\widetilde{O}\left(N^{0.9} ight) \ \cdot poly(arepsilon^{-1})$ | $\widetilde{O}\left(N^{0.95} ight) \ \cdot poly(arepsilon^{-1})$ | polylog(N)       | $\widetilde{O}(N^{1.1})$       |                 |
|                                                                                                                |                                                                 |                                                                  |                  |                                |                 |

| Property Family                                                                                                | V Sample<br>Complexity                                          | Comm.<br>Complexity                                              | # of<br>Messages | Honest P Sample<br>Complexity* | Notes           |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------|--------------------------------|-----------------|
| Label-invariant                                                                                                | $\widetilde{O}\left(N^{1/2}\cdot\varepsilon^{-4}\right)$        | $\widetilde{O}\left(N^{1/2}\cdot\varepsilon^{-4}\right)$         | 2                | $\widetilde{O}(N)$             |                 |
|                                                                                                                | $\widetilde{O}\left(N^{2/3}\cdot \varepsilon^{-6}\right)$       | $\widetilde{O}\left(N^{2/3}\cdot \varepsilon^{-6}\right)$        | 2                | $\widetilde{O}(N)$             | Public-<br>coin |
| Given complete description $(x, D(x))$ , $TV(D, \mathcal{P})$ approximated by low depth circuit / low space TM | $\widetilde{O}\left(N^{0.9} ight) \ \cdot poly(arepsilon^{-1})$ | $\widetilde{O}\left(N^{0.95} ight) \ \cdot poly(arepsilon^{-1})$ | polylog(N)       | $\widetilde{O}(N^{1.1})$       |                 |
| Given complete description $(x, D(x))$ , $TV(D, \mathcal{P})$ approximated by <b>poly</b> time algorithm       | $O\left(N^{1/2}\cdot \varepsilon^{-2}\right)$                   | $\widetilde{O}\left(N^{1/2}\cdotarepsilon^{-2} ight)$            | 4                | $\widetilde{O}(N)$             | Assuming<br>CRH |

| Property Family                                                                                                | V Sample<br>Complexity                                                         | Comm.<br>Complexity                                              | # of<br>Messages | Honest P Sample<br>Complexity* | Notes           |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|------------------|--------------------------------|-----------------|
| Label-invariant                                                                                                | $\widetilde{O}\left(N^{1/2}\cdot\varepsilon^{-4}\right)$                       | $\widetilde{O}\left(N^{1/2}\cdot \varepsilon^{-4}\right)$        | 2                | $\widetilde{O}(N)$             |                 |
| · · · · · · · · · · · · · · · · · · ·                                                                          | $\widetilde{O}\left(N^{2/3}\cdot \varepsilon^{-6}\right)$                      | $\widetilde{O}\left(N^{2/3}\cdot \varepsilon^{-6}\right)$        | 2                | $\widetilde{O}(N)$             | Public-<br>coin |
| Given complete description $(x, D(x))$ , $TV(D, \mathcal{P})$ approximated by low depth circuit / low space TM | $\widetilde{O}\left(N^{0.9} ight) \ \cdot \operatorname{poly}(arepsilon^{-1})$ | $\widetilde{O}\left(N^{0.95} ight) \ \cdot poly(arepsilon^{-1})$ | polylog(N)       | $\widetilde{O}(N^{1.1})$       |                 |
| Given complete description $(x, D(x))$ , $TV(D, \mathcal{P})$ approximated by <b>poly</b> time algorithm       | $O\left(N^{1/2}\cdot \varepsilon^{-2}\right)$                                  | $\widetilde{O}\left(N^{1/2}\cdot \varepsilon^{-2}\right)$        | 4                | $\widetilde{O}(N)$             | Assuming<br>CRH |

\*Ignoring poly( $\varepsilon^{-1}$ ) factors

#### Results Overview (joint work with Guy Rothblum)

| Property Family | V Sample<br>Complexity | Comm.<br>Complexity | # of<br>Messages | Honest P Sample<br>Complexity* | Notes |
|-----------------|------------------------|---------------------|------------------|--------------------------------|-------|
|                 | ~ ( -1/24)             | $\sim (1.10)$       |                  |                                |       |

#### My goals for the first hour:

Given of TV(D

Show that with sample access **and** communication with a prover we can do many unexpected things!

Demonstrate tools and ideas.

questions to have in mind: what assumptions over the distribution can help us? What settings might this capture?

der Given d

TV(D,

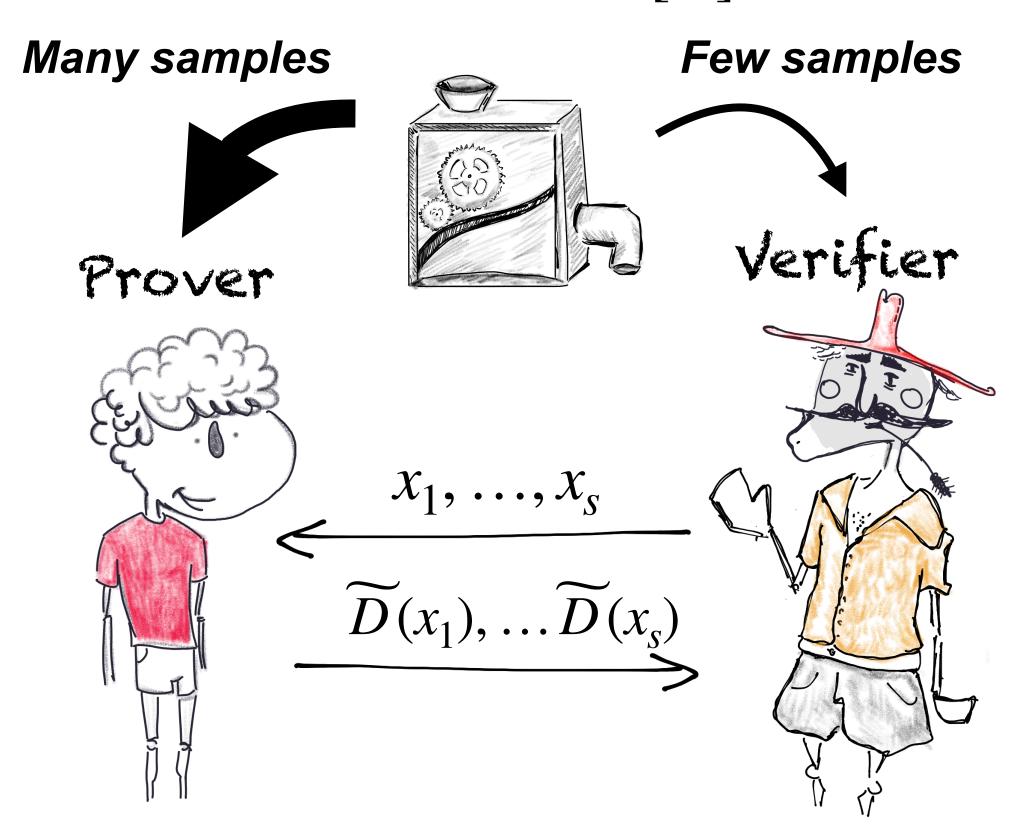
**Goal:** verifiably obtain a tagged sample, i.e. (x, D(x)) where  $x \sim D$  i.i.d., while requiring  $\ll N$  samples.

**Goal:** verifiably obtain a tagged sample, i.e. (x, D(x)) where  $x \sim D$  i.i.d., while requiring  $\ll N$  samples.

#### Very useful:

- Approximate the probability histogram. E.g. half the samples have probability  $2/N \Longrightarrow \approx 0.5$  mass of D on elements w.p,  $2/N \Longrightarrow$  there are (approx.) N/4 elements with probability 2/N.
- ullet Approximate distance from fixed distribution Q given explicitly.
- More...

Distribution D over [N]



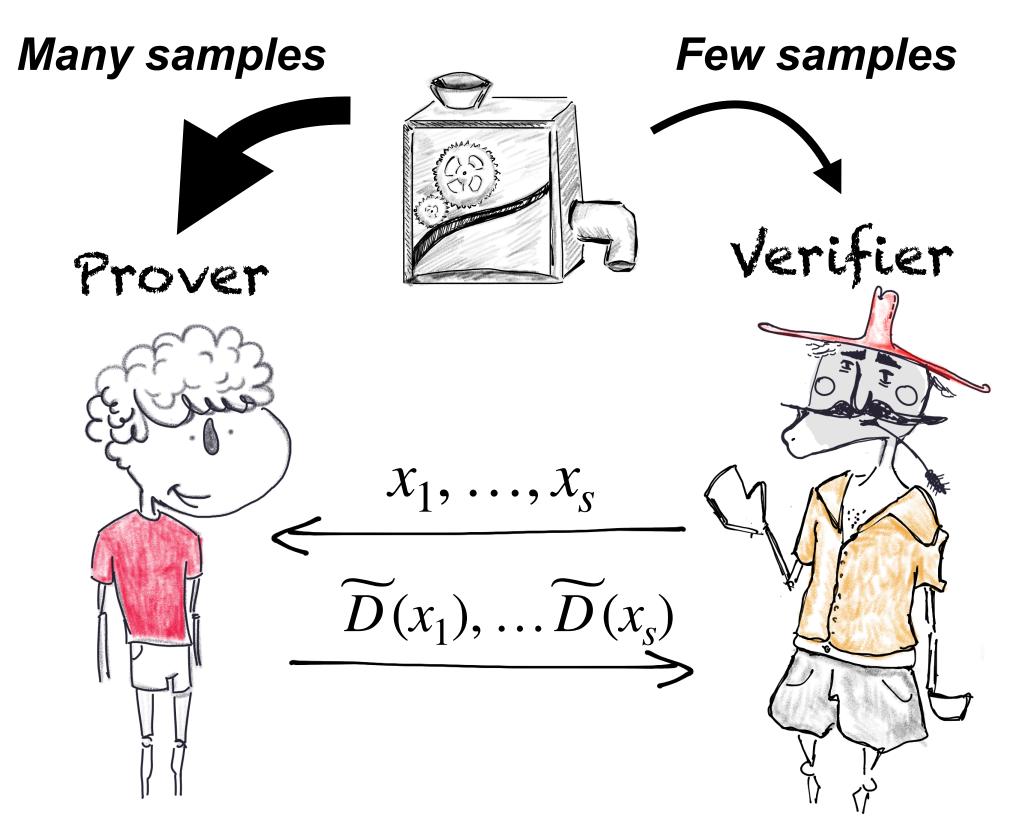
#### Goal:

**Completeness:** if  $\widetilde{D}(x_i) = D(x_i) \rightarrow \text{w.h.p.} V$  accepts.

**Soundness:**  $\forall P^*$  w.h.p. either V rejects or outputs a collection of  $(x, \pi_x)$ , where  $\pi_x \approx D(x)$  for almost all samples x.

Verifier samp. complexity, runtime  $O(N^{1/2})$ .

Distribution D over [N]



#### Goal:

**Completeness:** if  $\widetilde{D}(x_i) = D(x_i) \rightarrow \text{w.h.p.}$  V accepts.

**Soundness:**  $\forall P^*$  w.h.p. either V rejects or outputs a collection of  $(x, \pi_x)$ , where  $\pi_x \approx D(x)$  for almost all samples x.

Verifier samp. complexity, runtime  $\widetilde{O}(N^{1/2})$ .

Simplifying assumption: 
$$D(x) \in \left\{ \frac{1}{N}, \frac{2}{N}, \dots, \frac{100}{N} \right\}$$





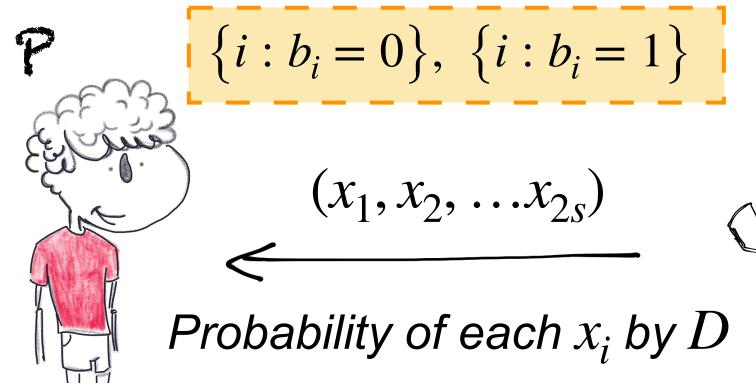




Set 
$$s = \widetilde{\theta}\left(\sqrt{N}\right)$$
, repeat  $2s$  times:

- 1. Flip fair coin b.
- 2. If b=0, draw  $x\sim D$ ; else  $x\sim U_{[N]}$ .

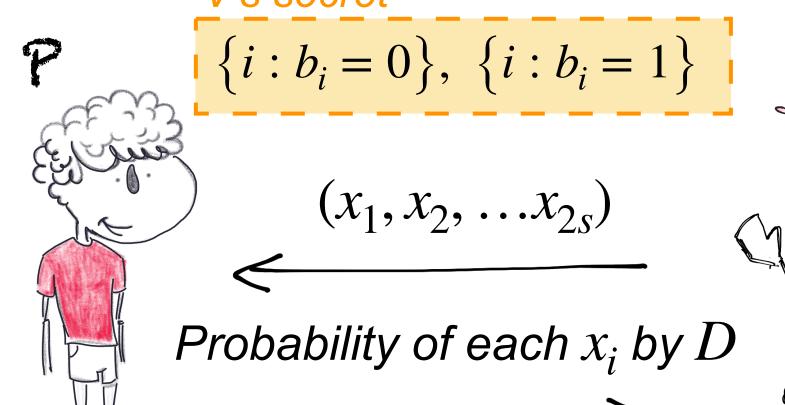




Set 
$$s = \widetilde{\theta}\left(\sqrt{N}\right)$$
, repeat  $2s$  times:

- 1. Flip fair coin b.
- 2. If b=0, draw  $x \sim D$ ; else  $x \sim U_{[N]}$ .

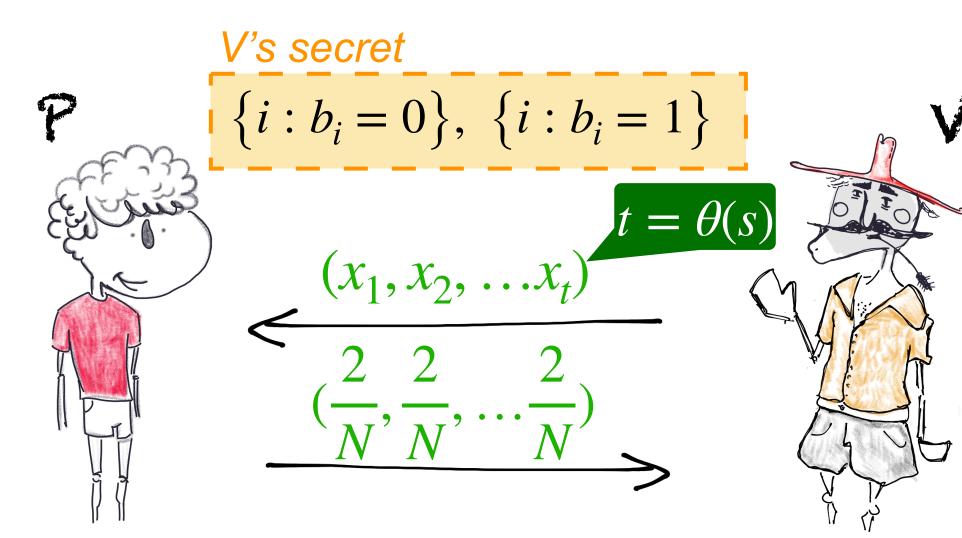




Set 
$$s = \widetilde{\theta}\left(\sqrt{N}\right)$$
, repeat  $2s$  times:

- 1. Flip fair coin b.
- 2. If b=0, draw  $x \sim D$ ; else  $x \sim U_{[N]}$ .

If P is honest, V obtained a correct tagged sample



Set 
$$s = \widetilde{\theta}\left(\sqrt{N}\right)$$
, repeat  $2s$  times:

- 1. Flip fair coin b.
- 2. If b=0, draw  $x \sim D$ ; else  $x \sim U_{[N]}$ .

V's secret

$$\{i: b_i = 0\}, \ \{i: b_i = 1\}$$

$$\underbrace{\frac{(x_1, x_2, \dots x_t)}{2}}_{\substack{(\frac{N}{N}, \frac{N}{N}, \dots \frac{N}{N})}}$$



Set 
$$s = \widetilde{\theta}(\sqrt{N})$$
, repeat  $2s$  times:

- 1. Flip fair coin b.
- 2. If b=0, draw  $x \sim D$ ; else  $x \sim U_{[N]}$ .

#### Verifier tests

Look e.g. at the samples with alleged prob. 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)

V's secret

$$\{i: b_i = 0\}, \ \{i: b_i = 1\}$$

$$(x_1, x_2, \dots x_t)$$

$$(\frac{2}{N}, \frac{2}{N}, \dots \frac{2}{N})$$



Set 
$$s = \widetilde{\theta}\left(\sqrt{N}\right)$$
, repeat  $2s$  times:

- 1. Flip fair coin b.
- 2. If b=0, draw  $x \sim D$ ; else  $x \sim U_{[N]}$ .

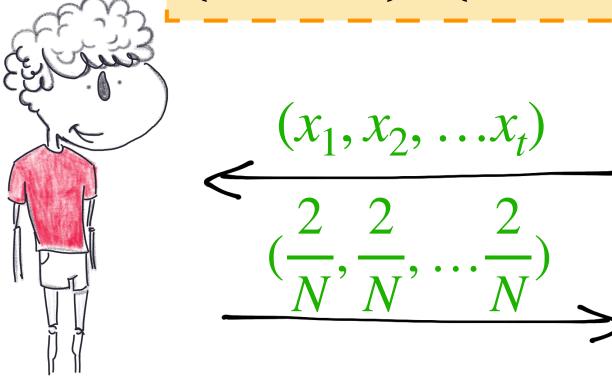
#### Verifier tests

Look e.g. at the samples with alleged prob. 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)

V's secret

$$\{i: b_i = 0\}, \{i: b_i = 1\}$$





Set 
$$s = \widetilde{\theta}(\sqrt{N})$$
, repeat  $2s$  times:

- 1. Flip fair coin b.
- 2. If b=0, draw  $x \sim D$ ; else  $x \sim U_{[N]}$ .

#### Verifier tests

Look e.g. at the samples with alleged prob. 2/N:

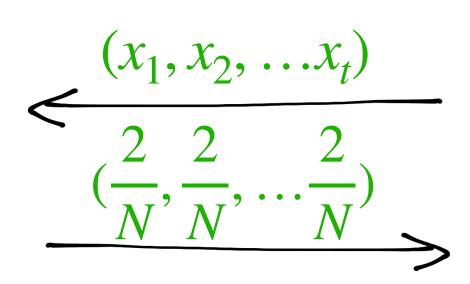
- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)

Draw s fresh D-samples, and check s  $\left(t \cdot \frac{2}{N}\right)$  of them have alleged prob. 2/N.

### Obtaining Verified Tagged Sample

#### V's secret

$$\{i: b_i = 0\}, \ \{i: b_i = 1\}$$





### Set $s = \widetilde{\theta}(\sqrt{N})$ , repeat 2s times:

- 1. Flip fair coin b.
- 2. If b=0, draw  $x \sim D$ ; else  $x \sim U_{[N]}$ .

#### Verifier tests

#### Look e.g. at the samples with alleged prob. 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)

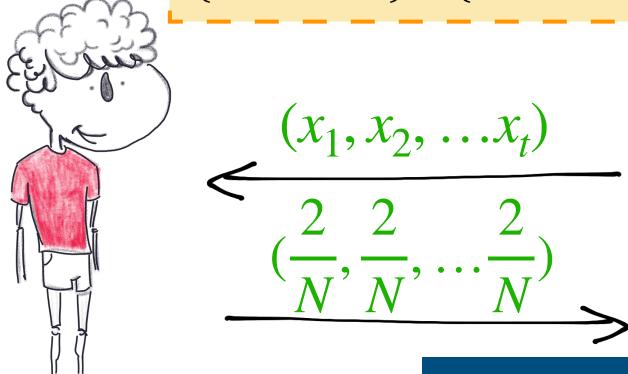
Draw s fresh D-samples, and check s  $\left(t \cdot \frac{2}{N}\right)$  of them have alleged prob. 2/N.

Do this for all 
$$\begin{cases} 1 & 2 & 100 \\ \hline N, N, & N \end{cases}$$

### Obtaining Verified Tagged Sample

#### V's secret

$$\{i: b_i = 0\}, \{i: b_i = 1\}$$





Set 
$$s = \widetilde{\theta}(\sqrt{N})$$
, repeat  $2s$  times:

- 1. Flip fair coin b.
- 2. If b=0, draw  $x \sim D$ ; else  $x \sim U_{[N]}$ .

#### Verifier tests

#### Completeness



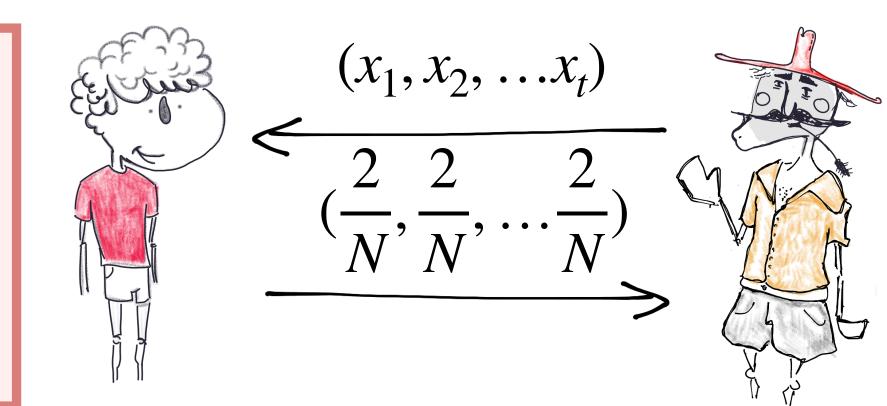
#### Look e.g. at the samples with alleged prob. 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)

Draw s fresh D-samples, and check s  $\left(t \cdot \frac{2}{N}\right)$  of them have alleged prob. 2/N.

#### Look at the t samples tagged 2/N:

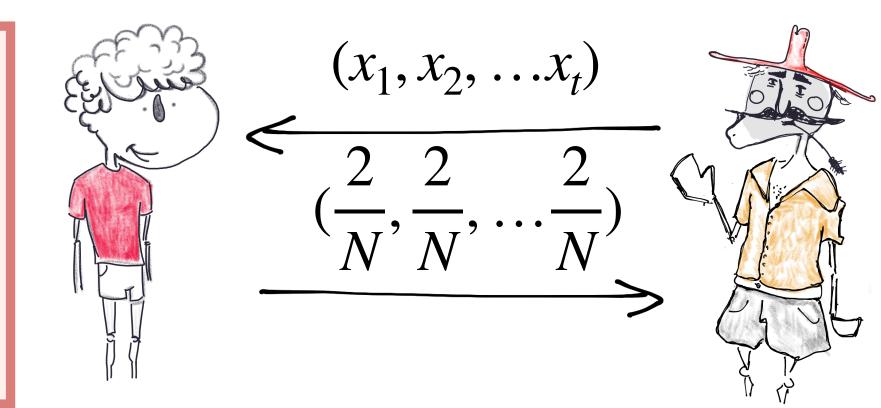
- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



How to Produce  $((b_1, x_1), ...(b_{2s}, x_{2s}))$ ?

### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



### How to Produce $((b_1, x_1), ...(b_{2s}, x_{2s}))$ ?

### I, "b then x"

- 1. Draw b
- 2. If b = 0,  $x \sim D$ ; o.w.  $x \sim U_{[N]}$

II, "
$$x$$
 then  $b$ "

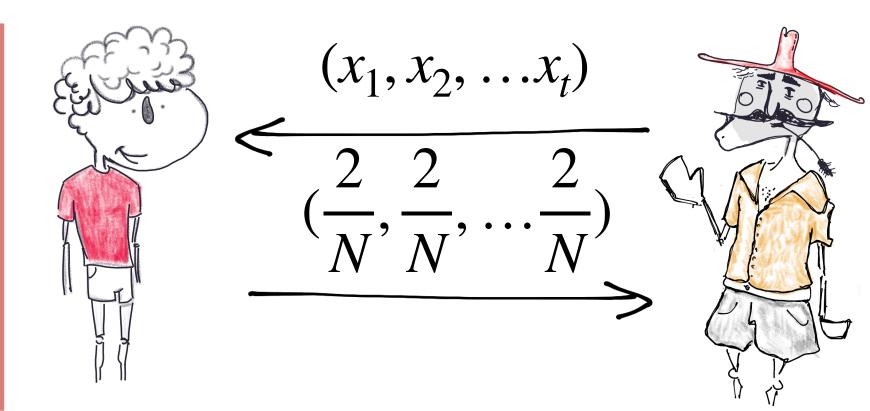
II, "x then b"

1. Draw 
$$x \sim \frac{1}{2}D + \frac{1}{2}U_{[N]}$$

2. 
$$\forall x, b \mid_{x} = 0$$
, w.p.  $\frac{D(x)}{D(x) + 1/N}$ ; o.w.  $b \mid_{x} = 1$ 

### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



### How to Produce $((b_1, x_1), ...(b_2, x_2))$ ?

### I, "b then x"

- 1. Draw b
- 2. If b = 0,  $x \sim D$ ; o.w.  $x \sim U_{[N]}$

II, "
$$x$$
 then  $b$ "

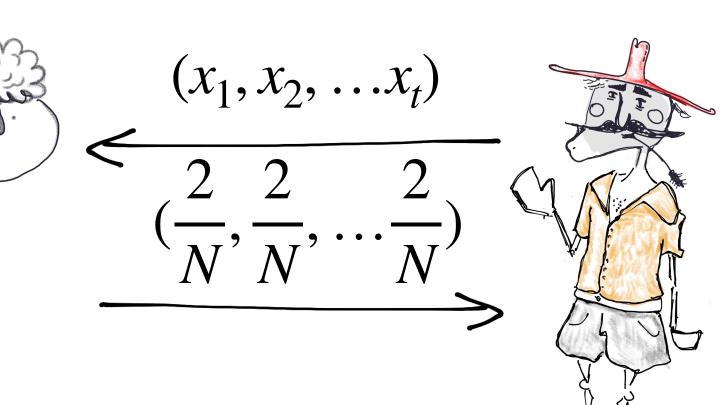
II, "x then b"

1. Draw 
$$x \sim \frac{1}{2}D + \frac{1}{2}U_{[N]}$$

2. 
$$\forall x, b \mid_{x} = 0$$
, w.p.  $\frac{D(x)}{D(x) + 1/N}$ ; o.w.  $b \mid_{x} = 1$ 

### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is · (total # of samples)



P's perspective: V decides  $(b_i)$  AFTER P's message.

### I, "b then x"

- 1. Draw b
- 2. If b = 0,  $x \sim D$ ; o.w.  $x \sim U_{[N]}$

II, "
$$x$$
 then  $b$ "

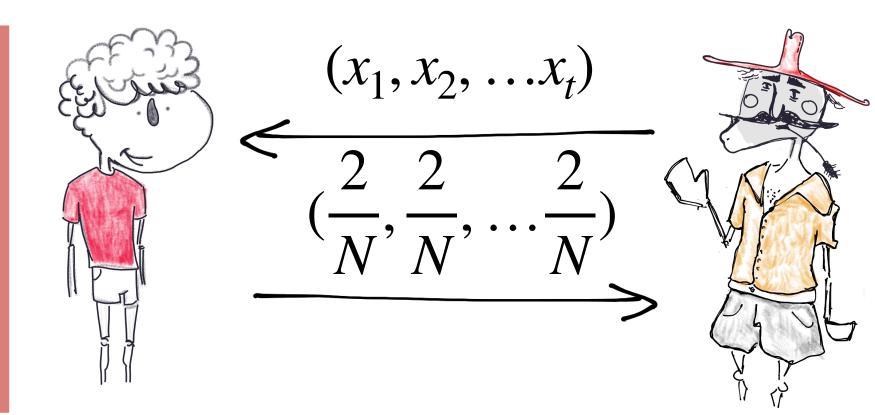
II, "x then b"

1. Draw 
$$x \sim \frac{1}{2}D + \frac{1}{2}U_{[N]}$$

2. 
$$\forall x, b \mid_{x} = 0$$
, w.p.  $\frac{D(x)}{D(x) + 1/N}$ ; o.w.  $b \mid_{x} = 1$ 

### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



#### $(b_i)$ determined AFTER prover's message:

II, "
$$x$$
 then  $b$ "

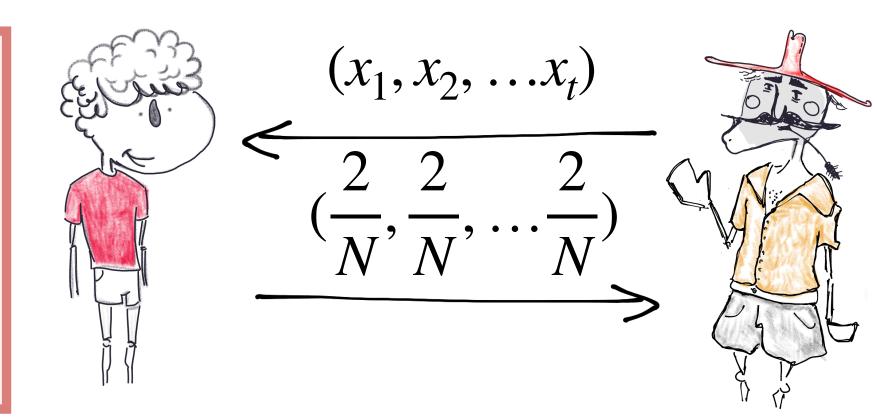
II, "x then b"

1. Draw 
$$x \sim \frac{1}{2}D + \frac{1}{2}U_{[N]}$$

2. 
$$\forall x, b \mid_{x} = 0$$
, w.p.  $\frac{D(x)}{D(x) + 1/N}$ ; o.w.  $b \mid_{x} = 1$ 

#### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



#### $(b_i)$ determined AFTER prover's message:

#### Test 1 passed:

$$\mathbb{E}_{x \sim_{u}\{x_{1}, \dots, x_{t}\}} \left[ \frac{\Pr\left(b \mid_{x} = 1\right)}{\Pr\left(b \mid_{x} = 0\right)} \right] = \frac{1}{2}$$

$$\mathbb{E}_{x \sim_u \{x_1, \dots, x_t\}} \left[ D(x) \right] = \frac{2}{N}$$

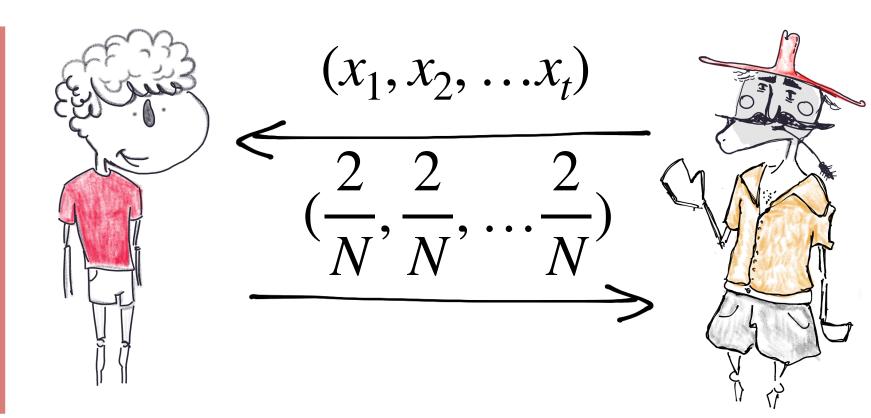
II, "x then b"

1. Draw 
$$x \sim \frac{1}{2}D + \frac{1}{2}U_{[N]}$$

2. 
$$\forall x, b \mid_{x} = 0$$
, w.p.  $\frac{D(x)}{D(x) + 1/N}$ ; o.w.  $b \mid_{x} = 1$ 

### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



### $(b_i)$ determined AFTER prover's

#### Test 1 passed:

$$\mathbb{E}_{x \sim_{u}\{x_{1},\dots,x_{t}\}} \left[ \frac{\Pr(b|_{x}=1)}{\Pr(b|_{x}=0)} \right] = \frac{1}{2}$$

#### Test 2 passed:

$$\mathbb{E}_{x \sim_u \{x_1, \dots, x_t\}} \left[ D(x) \right] = \frac{2}{N}$$

# $\frac{1/N}{N}$

D(x)

1/N + D(x)

$$1/N + D(x)$$

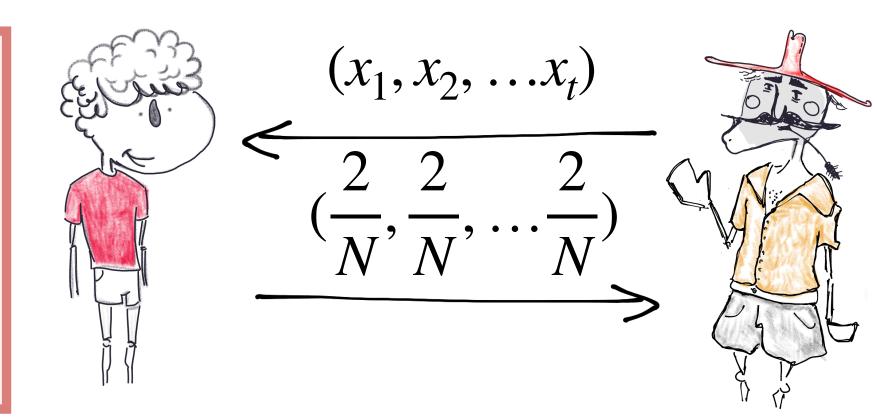
11, "
$$x$$
 then  $b$ "

1. Draw  $x \sim \frac{1}{2}D + \frac{1}{2}U_{[N]}$ 

$$||x, b||_x = 0$$
, w.p.  $\frac{D(x)}{D(x) + 1/N}$ ; o.w.  $b|_x = 1$ 

### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



#### $(b_i)$ determined AFTER prover's message:

#### Test 1 passed:

$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ \frac{1/N}{D(x)} \right] = \frac{1}{2}$$

$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ D(x) \right] = \frac{2}{N}$$

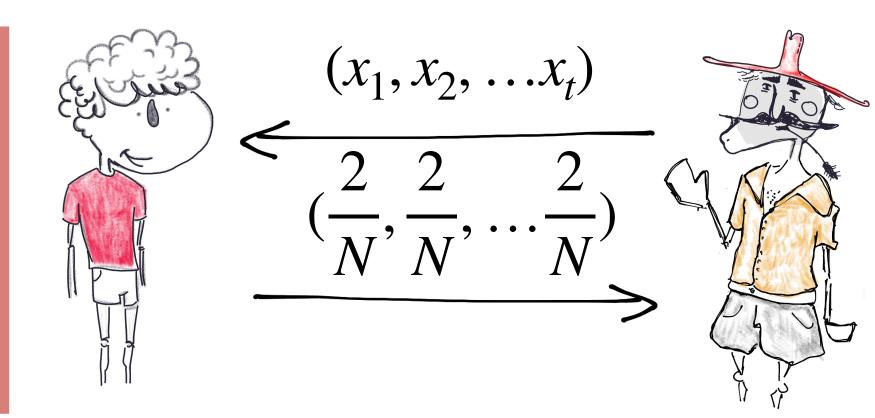
II, "x then b"

1. Draw 
$$x \sim \frac{1}{2}D + \frac{1}{2}U_{[N]}$$

2. 
$$\forall x, b \mid_{x} = 0$$
, w.p.  $\frac{D(x)}{D(x) + 1/N}$ ; o.w.  $b \mid_{x} = 1$ 

### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



#### $(b_i)$ determined AFTER prover's message:

#### Test 1 passed:

$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ \frac{1}{D(x)} \right] = \frac{N}{2}$$

$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ D(x) \right] = \frac{2}{N}$$

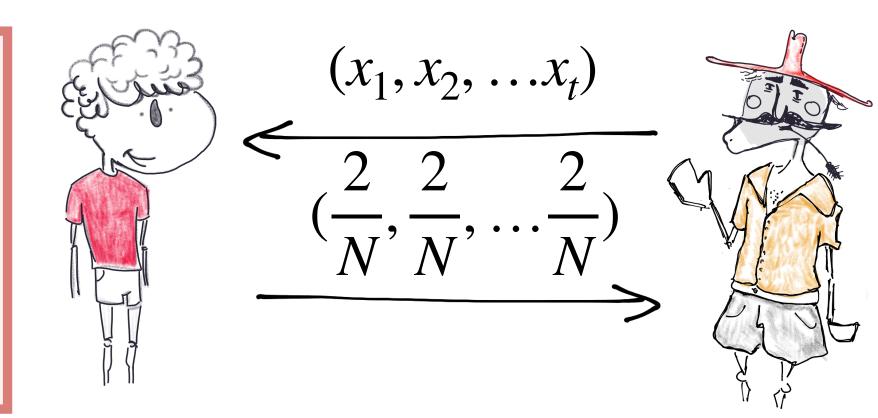
II, "x then b"

1. Draw 
$$x \sim \frac{1}{2}D + \frac{1}{2}U_{[N]}$$

2. 
$$\forall x, b \mid_{x} = 0$$
, w.p.  $\frac{D(x)}{D(x) + 1/N}$ ; o.w.  $b \mid_{x} = 1$ 

#### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



#### $(b_i)$ determined AFTER prover's message:

#### Test 1 passed:

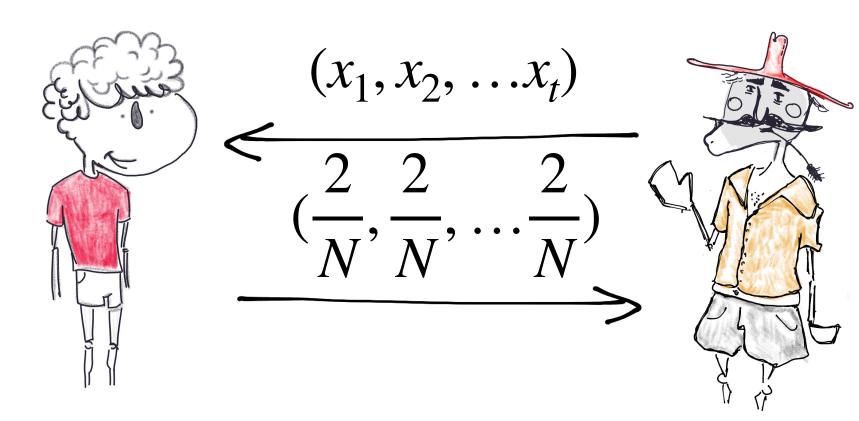
$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ \frac{1}{D(x)} \right] = \frac{N}{2}$$

Jensen's Inequality  $\Longrightarrow D(X)$  is a constant r.v.  $\mathbb{E}_{x \sim_u \{x_1, \dots, x_t\}} \left| \frac{1}{D(x)} \right| = \frac{N}{2} \qquad \forall x, D(x) = \mathbb{E}[D(X)] = 2/N$ 

$$\mathbb{E}_{x \sim_u \{x_1, \dots, x_t\}} \left[ D(x) \right] = \frac{2}{N}$$

### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



#### $(b_i)$ determined AFTER prover's message:

#### Test 1 passed:

$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ \frac{1}{D(x)} \right] = \frac{N}{2}$$

#### Test 2 passed:

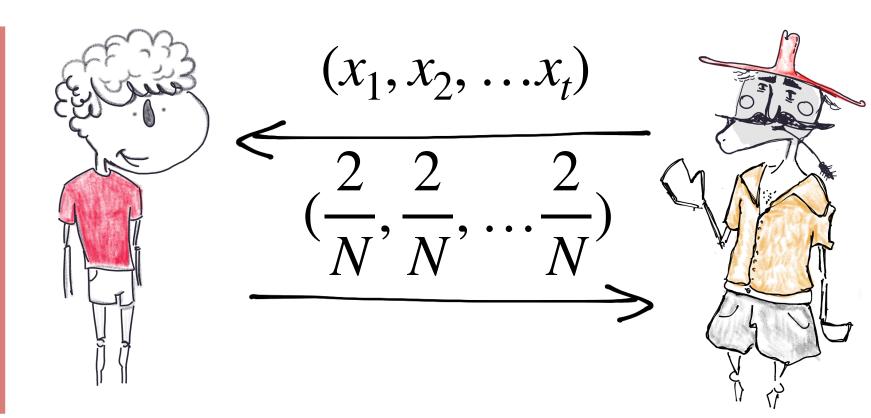
$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ D(x) \right] = \frac{2}{N}$$

$$\mathbb{E}_{x \sim_u \{x_1, \dots, x_t\}} \left[ \frac{1}{D(x)} \right] = \frac{N}{2}$$
 Jensen's Inequality  $\Longrightarrow D(X)$  is a constant r.v. 
$$\forall x, D(x) = \mathbb{E}[D(X)] = 2/N$$

Equations hold only if True probability = Alleged probability

#### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



#### $(b_i)$ determined AFTER prover's message:

#### Test 1 passed:

$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ \frac{1}{D(x)} \right] \approx \frac{N}{2}$$

#### Test 2 passed:

$$\mathbb{E}_{x \sim_u \{x_1, \dots, x_t\}} \left[ D(x) \right] \approx \frac{2}{N}$$

### More accurately

- 1. Samples tagged  $[2/N, (1 + \varepsilon) \cdot 2/N]$ .
- 2. Equations approximately hold.

### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of s

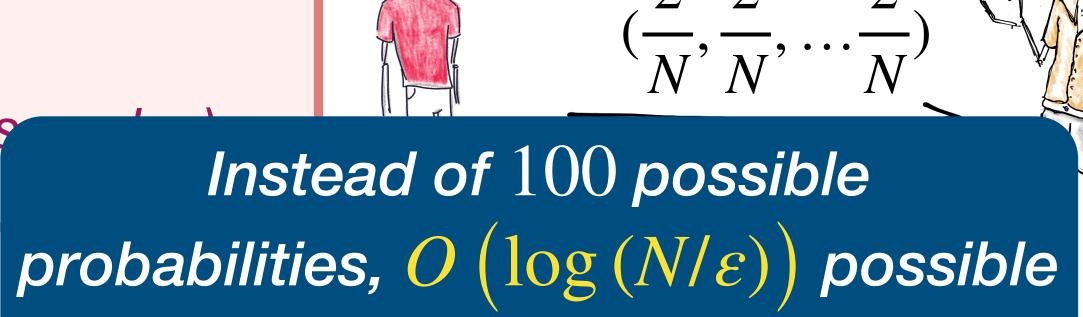


#### Test 1 passed:

$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ \frac{1}{D(x)} \right] \approx \frac{N}{2}$$

#### Test 2 passed:

$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ D(x) \right] \approx \frac{2}{N}$$



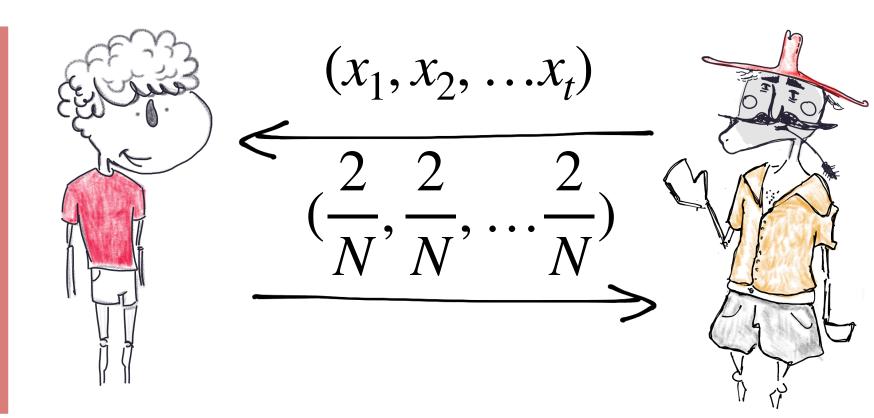
probabilities

More accurately

- 1. Samples tagged 2/N,  $(1 + \varepsilon) \cdot 2/N$ .
- 2. Equations approximately hold.

#### Look at the t samples tagged 2/N:

- 1. Consistency: (# of D-samples) = 2 · (# of U-samples)
- 2. Correct avg. probability: total mass is  $\frac{2}{N}$  · (total # of samples)



#### $(b_i)$ determined AFTER prover's message:

#### Test 1 passed:

$$\mathbb{E}_{x \sim_u\{x_1, \dots, x_t\}} \left[ \frac{1}{D(x)} \right] \approx \frac{N}{2}$$

#### Test 2 passed:

$$\mathbb{E}_{x \sim_u \{x_1, \dots, x_t\}} \left[ D(x) \right] \approx \frac{2}{N}$$

#### Claim:

Alleged probabilities **far** from correct  $\Longrightarrow$  Equations don't hold **even approximately.** 

• Via sample access, we can verifiably obtain (x, D(x)) for many  $x \sim D$ .

- Via sample access, we can verifiably obtain (x, D(x)) for many  $x \sim D$ .
- Immediate corollary: verify any label-invariant property.

- Via sample access, we can verifiably obtain (x, D(x)) for many  $x \sim D$ .
- Immediate corollary: verify any label-invariant property.
- Next leverage to obtain:

Theorem [HR'24]: very rich family of properties has an interactive proof with:

- **Verifier** sample complexity  $\widetilde{O}(N^{0.9})$  poly( $\varepsilon^{-1}$ ), runtime, and communication  $\widetilde{O}(N^{0.95})$  poly( $\varepsilon^{-1}$ ).
- Honest Prover time poly(N), sample complexity  $\widetilde{O}\left(N^{1.1}\right)$   $poly(\varepsilon^{-1})$ .

- Via sample access, we
- Immediate corollary: ve
- Next leverage to obtain

Given complete description  $\forall x, (x, D(x)), TV(D, \mathcal{P})$  approximated by **low depth** circuit / low space TM

nany  $x \sim D$ .

Theorem [HR'24]: very rich family of properties has an interactive proof with:

- **Verifier** sample complexity  $\widetilde{O}(N^{0.9})$  poly( $\varepsilon^{-1}$ ), runtime, and communication  $\widetilde{O}(N^{0.95})$  poly( $\varepsilon^{-1}$ ).
- Honest Prover time poly(N), sample complexity  $\widetilde{O}\left(N^{1.1}\right)$   $poly(\varepsilon^{-1})$ .

# Summary

Main takeaway - useful tool: given only sample access, many claims can be verified much more efficiently than repeating computation.

# Summary

Main takeaway - useful tool: given only sample access, many claims can be verified much more efficiently than repeating computation.

#### Not discussed:

- Lower bounds sample lower bounds; proving is harder than testing.
- Crypto assumptions reduce sample (what about communication?)
- Super-fast protocols for specific problems (e.g. verifying distributions are far).

### Questions for Discussion

#### Moving forward, to the context of Al:

- 1. Where do we find distributions accessible by samples (and not queries)? Choosing training set? Prompt distribution? Output distribution?
- 2. What might we want to *verify* about distributions? (Alignment? Compliance? Diversity of data?) Delegation? Can it be a property of the distribution?
- 3. Extending the model to accommodate more settings (better parameter regime):
  - a. New access models: what type of access do we expect to have (cond. sampling?)?
  - b. *More assumptions:* what if distribution admits some structure (e.g. is uniform, over metric space, We are given some other *advice*)? Can we get *super-fast protocols*?

### Theorem[H, Rothblum '25]:

Any interactive proof that a distribution is uniform over N/2 elements, has either:

- The verifier sample complexity is  $\Omega\left(N^{2/3}\right)$ , or -
- The honest prover sample complexity is  $\Omega(N)$ .

### Theorem[H, Rothblum '25]:

For any constant  $c \in \mathbb{R}^+$ , and  $k \in \mathbb{N}$ , any interactive proof that a **distribution** D satisfies  $\|D\|_k \leq \frac{c}{N^{1-1/k}}$ , or is  $\varepsilon$ -far from any such distribution, has either:

- The verifier sample complexity is  $\Omega\left(N^{1-1/k}\right)$ , or -
- The honest prover sample complexity is  $\Omega(N)$ .